T. Cusati;D. Marian;A. Toral-Lopez;E. G. Marin;G. Iannaccone;G. Fiori
{"title":"Transistors With MoS$_{2}$ Subnanometer Channels Embedded in 2D WSe$_{2}$","authors":"T. Cusati;D. Marian;A. Toral-Lopez;E. G. Marin;G. Iannaccone;G. Fiori","doi":"10.1109/TNANO.2025.3549522","DOIUrl":null,"url":null,"abstract":"We investigate the exploitation of one of the latest advancements in the processing of the two-dimensional materials (2DMs) lateral heterostructures (LH) for electronic applications, which involves the generation of subnanometer one-dimensional (1D) channels embedded in a 2D crystal. Such study is done through a multiscale approach combining Density Functional Theory (DFT) and quantum transport calculations to propose and evaluate various Field-Effect Transistors (FETs) based on LH incorporating one-dimensional MoS<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> channels within monolayer WSe<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>. We assess the ultimate performance of the transistors by considering different device configurations, lengths and orientations.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"152-156"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10922137/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the exploitation of one of the latest advancements in the processing of the two-dimensional materials (2DMs) lateral heterostructures (LH) for electronic applications, which involves the generation of subnanometer one-dimensional (1D) channels embedded in a 2D crystal. Such study is done through a multiscale approach combining Density Functional Theory (DFT) and quantum transport calculations to propose and evaluate various Field-Effect Transistors (FETs) based on LH incorporating one-dimensional MoS$_{2}$ channels within monolayer WSe$_{2}$. We assess the ultimate performance of the transistors by considering different device configurations, lengths and orientations.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.