Split-p-GaN Gate HEMT With Suppressed Negative Vth Shift and Enhanced Robustness Against False Turn-On

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yunhong Lao;Jin Wei;Maojun Wang;Jingjing Yu;Zetao Fan;Junjie Yang;Jiawei Cui;Teng Li;Han Yang;Muqin Nuo;Qimeng Jiang;Gaofei Tang;Bo Shen
{"title":"Split-p-GaN Gate HEMT With Suppressed Negative Vth Shift and Enhanced Robustness Against False Turn-On","authors":"Yunhong Lao;Jin Wei;Maojun Wang;Jingjing Yu;Zetao Fan;Junjie Yang;Jiawei Cui;Teng Li;Han Yang;Muqin Nuo;Qimeng Jiang;Gaofei Tang;Bo Shen","doi":"10.1109/LED.2025.3535601","DOIUrl":null,"url":null,"abstract":"In the development of the Schottky-type p-GaN gate HEMT, the instable <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> is always a highlighted problem. Under high <inline-formula> <tex-math>${V}_{\\text {DS}}$ </tex-math></inline-formula> bias, the potential of the floating p-GaN can be raised by the gate/drain coupled barrier lowering (GDCBL) effect, inducing a noticeable negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift. During the fast switching operation, the negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift severely aggravates the false turn-on problem. In this work, a split-p-GaN gate HEMT (SPG-HEMT) is demonstrated to effectively suppress the drain-induced negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift, enhancing the robustness against false turn-on. At <inline-formula> <tex-math>${V}_{\\text {DS}} =100$ </tex-math></inline-formula> V, the conventional p-GaN gate HEMT (Conv-HEMT) suffers a negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift of −0.33 V, while the SPG-HEMT exhibits only a minimal <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift of −0.07 V. In the SPG-HEMT, the GDCBL effect takes place only for the p-GaN near the drain side (p<inline-formula> <tex-math>$_{{2}}\\text {)}$ </tex-math></inline-formula>; the p-GaN near the source (p<inline-formula> <tex-math>$_{{1}}\\text {)}$ </tex-math></inline-formula> is isolated from p2 via the gate/p-GaN Schottky junctions, and the influence of drain bias upon p1 is shielded by p2. Then, the impact of negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift on false turn-on is evaluated by a half-bridge switching circuit. Due to the obvious negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift, the Conv-HEMT is falsely turned on when the <inline-formula> <tex-math>${V}_{\\text {GS}}$ </tex-math></inline-formula> ringing peak is still much lower than the static threshold voltage (<inline-formula> <tex-math>${V}_{{\\mathrm {th0}}})$ </tex-math></inline-formula>. In contrast, the SPG-HEMT starts to show false turn-on signal only when the <inline-formula> <tex-math>${V}_{\\text {GS}}$ </tex-math></inline-formula> ringing peak is near <inline-formula> <tex-math>${V}_{{\\mathrm {th0}}}$ </tex-math></inline-formula>. Overall, the unique device structure of the SPG-HEMT leads to a negligible negative <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> shift and enhances the robustness against false turn-on.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 4","pages":"628-631"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856268/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the development of the Schottky-type p-GaN gate HEMT, the instable ${V}_{\text {th}}$ is always a highlighted problem. Under high ${V}_{\text {DS}}$ bias, the potential of the floating p-GaN can be raised by the gate/drain coupled barrier lowering (GDCBL) effect, inducing a noticeable negative ${V}_{\text {th}}$ shift. During the fast switching operation, the negative ${V}_{\text {th}}$ shift severely aggravates the false turn-on problem. In this work, a split-p-GaN gate HEMT (SPG-HEMT) is demonstrated to effectively suppress the drain-induced negative ${V}_{\text {th}}$ shift, enhancing the robustness against false turn-on. At ${V}_{\text {DS}} =100$ V, the conventional p-GaN gate HEMT (Conv-HEMT) suffers a negative ${V}_{\text {th}}$ shift of −0.33 V, while the SPG-HEMT exhibits only a minimal ${V}_{\text {th}}$ shift of −0.07 V. In the SPG-HEMT, the GDCBL effect takes place only for the p-GaN near the drain side (p $_{{2}}\text {)}$ ; the p-GaN near the source (p $_{{1}}\text {)}$ is isolated from p2 via the gate/p-GaN Schottky junctions, and the influence of drain bias upon p1 is shielded by p2. Then, the impact of negative ${V}_{\text {th}}$ shift on false turn-on is evaluated by a half-bridge switching circuit. Due to the obvious negative ${V}_{\text {th}}$ shift, the Conv-HEMT is falsely turned on when the ${V}_{\text {GS}}$ ringing peak is still much lower than the static threshold voltage ( ${V}_{{\mathrm {th0}}})$ . In contrast, the SPG-HEMT starts to show false turn-on signal only when the ${V}_{\text {GS}}$ ringing peak is near ${V}_{{\mathrm {th0}}}$ . Overall, the unique device structure of the SPG-HEMT leads to a negligible negative ${V}_{\text {th}}$ shift and enhances the robustness against false turn-on.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信