Koya Okazaki;Takahito Yoshinaga;Nobukazu Teranishi;Atsushi Ono
{"title":"Enhancement of Near-Infrared Sensitivity in Silicon-Based Image Sensors to Oblique Chief Rays via Quasi-Surface Plasmon Resonance","authors":"Koya Okazaki;Takahito Yoshinaga;Nobukazu Teranishi;Atsushi Ono","doi":"10.1109/JEDS.2025.3549721","DOIUrl":null,"url":null,"abstract":"A silicon-based image sensor is proposed, incorporating plasmonic diffraction gratings tailored to chief ray angles (CRAs), to enhance near-infrared (NIR) sensitivity improvement over a broad range of incident angles. Under quasi-surface plasmon resonance (quasi-SPR) conditions, the metal grating efficiently diffracted incident light into the silicon absorption layer. The period and width of the metal grating were adjusted at each pixel position according to CRAs, thereby improving the NIR sensitivity at sensor edges. The plasmonically diffracted light with angled chief ray was confined within the pixel photodiode. The photon confinement resulted in a significant improvement in absorption of approximately 37% or more, within an incident angle range of 30 degrees at a NIR wavelength of 940 nm and a silicon thickness of 3 μm. The improvement in NIR absorption over a broad incident angle range enhances the sensitivity of the entire sensor chip, representing a significant advancement for NIR cameras.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"278-284"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10918731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10918731/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A silicon-based image sensor is proposed, incorporating plasmonic diffraction gratings tailored to chief ray angles (CRAs), to enhance near-infrared (NIR) sensitivity improvement over a broad range of incident angles. Under quasi-surface plasmon resonance (quasi-SPR) conditions, the metal grating efficiently diffracted incident light into the silicon absorption layer. The period and width of the metal grating were adjusted at each pixel position according to CRAs, thereby improving the NIR sensitivity at sensor edges. The plasmonically diffracted light with angled chief ray was confined within the pixel photodiode. The photon confinement resulted in a significant improvement in absorption of approximately 37% or more, within an incident angle range of 30 degrees at a NIR wavelength of 940 nm and a silicon thickness of 3 μm. The improvement in NIR absorption over a broad incident angle range enhances the sensitivity of the entire sensor chip, representing a significant advancement for NIR cameras.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.