{"title":"Spectral radius and fractional [a,b]-factor of graphs","authors":"Yuang Li , Dandan Fan , Yinfen Zhu","doi":"10.1016/j.laa.2025.03.012","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>h</mi><mo>:</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> be a function on <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and let <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> be two positive integers with <span><math><mi>a</mi><mo>≤</mo><mi>b</mi></math></span>. If <span><math><mi>a</mi><mo>≤</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∈</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>v</mi><mo>)</mo></mrow></msub><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>≤</mo><mi>b</mi></math></span> for any <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, then the spanning subgraph with edge set <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>h</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo></math></span>, denoted by <span><math><mi>G</mi><mrow><mo>[</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>]</mo></mrow></math></span>, is called a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor of <em>G</em> with indicator function <em>h</em>. In this paper, we provide a spectral condition to guarantee the existence of a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor in a graph with minimum degree <span><math><mi>δ</mi><mo>≥</mo><mi>a</mi><mo>≥</mo><mn>1</mn></math></span>, which extends some previous results. Moreover, we also provide a lower bound on the size of a graph to guarantee the existence of a fractional <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></math></span>-factor for <span><math><mi>b</mi><mo>≥</mo><mi>a</mi><mo>≥</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"715 ","pages":"Pages 32-45"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a function on and let be two positive integers with . If for any , then the spanning subgraph with edge set , denoted by , is called a fractional -factor of G with indicator function h. In this paper, we provide a spectral condition to guarantee the existence of a fractional -factor in a graph with minimum degree , which extends some previous results. Moreover, we also provide a lower bound on the size of a graph to guarantee the existence of a fractional -factor for .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.