GMT: Gzip-based Memory-efficient Time-series classification

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sungmin Lee , Kichang Lee , JaeYeon Park , JeongGil Ko
{"title":"GMT: Gzip-based Memory-efficient Time-series classification","authors":"Sungmin Lee ,&nbsp;Kichang Lee ,&nbsp;JaeYeon Park ,&nbsp;JeongGil Ko","doi":"10.1016/j.icte.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>The deployment of embedded time-series sensing devices enabled better understanding of user environments and contexts. However, classifying them solely on extremely limited devices under data-scarce conditions is still a remaining challenge. We introduce <em>GMT</em>, a memory-efficient parameter-free classifier that uses <em>gzip</em> compressor and <em>k</em>-nearest neighbors (<em>k</em>NN) for classifying multi-channel time-series data. <em>GMT</em> tackles issues due to high data fidelity, multi-channel characteristics, and numerical properties of sensor data using techniques such as <em>floating point quantization</em>, <em>channel-wise compression</em>, and <em>hybrid distance</em>. Experiments show that <em>GMT</em> provides superior accuracy and memory efficiency compared to other classifiers across various tasks and applications.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 2","pages":"Pages 270-274"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001528","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The deployment of embedded time-series sensing devices enabled better understanding of user environments and contexts. However, classifying them solely on extremely limited devices under data-scarce conditions is still a remaining challenge. We introduce GMT, a memory-efficient parameter-free classifier that uses gzip compressor and k-nearest neighbors (kNN) for classifying multi-channel time-series data. GMT tackles issues due to high data fidelity, multi-channel characteristics, and numerical properties of sensor data using techniques such as floating point quantization, channel-wise compression, and hybrid distance. Experiments show that GMT provides superior accuracy and memory efficiency compared to other classifiers across various tasks and applications.
GMT:基于gzip的内存效率时间序列分类
嵌入式时间序列传感设备的部署能够更好地理解用户环境和上下文。然而,在数据稀缺的条件下,仅在极其有限的设备上对它们进行分类仍然是一个挑战。我们介绍了GMT,一种使用gzip压缩器和k近邻(kNN)对多通道时间序列数据进行分类的内存高效无参数分类器。GMT解决了由于高数据保真度、多通道特性和使用浮点量化、通道压缩和混合距离等技术的传感器数据的数值特性而引起的问题。实验表明,与其他分类器相比,GMT在各种任务和应用中提供了更高的准确性和内存效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信