Semi-PKD: Semi-supervised Pseudoknowledge Distillation for saliency prediction

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chakkrit Termritthikun , Ayaz Umer , Suwichaya Suwanwimolkul , Ivan Lee
{"title":"Semi-PKD: Semi-supervised Pseudoknowledge Distillation for saliency prediction","authors":"Chakkrit Termritthikun ,&nbsp;Ayaz Umer ,&nbsp;Suwichaya Suwanwimolkul ,&nbsp;Ivan Lee","doi":"10.1016/j.icte.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>In saliency prediction, Knowledge Distillation (KD) is leveraged to improve the predictive performance of compact Student Networks. However, the challenge is searching for an optimal teacher–student pair while handling the unavailability of large-scale annotations in the Pseudoknowledge Distillation (PKD). To overcome this challenge, a semi-supervised method is proposed; Semi-PKD. This method involves pseudo-label generation on unlabeled data by a Teacher Network trained using the exponential moving average KD (EMA-KD) method. The EMA-KD method utilizes only the Student Network by acquiring self-knowledge, solving the problem of optimal teacher–student pair selection. Semi-PKD outperforms other state-of-the-art saliency prediction models across various evaluation metrics. The code is available at <span><span>https://github.com/chakkritte/Semi-PKD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 2","pages":"Pages 364-370"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001425","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In saliency prediction, Knowledge Distillation (KD) is leveraged to improve the predictive performance of compact Student Networks. However, the challenge is searching for an optimal teacher–student pair while handling the unavailability of large-scale annotations in the Pseudoknowledge Distillation (PKD). To overcome this challenge, a semi-supervised method is proposed; Semi-PKD. This method involves pseudo-label generation on unlabeled data by a Teacher Network trained using the exponential moving average KD (EMA-KD) method. The EMA-KD method utilizes only the Student Network by acquiring self-knowledge, solving the problem of optimal teacher–student pair selection. Semi-PKD outperforms other state-of-the-art saliency prediction models across various evaluation metrics. The code is available at https://github.com/chakkritte/Semi-PKD.
Semi-PKD:用于显著性预测的半监督伪知识蒸馏
在显著性预测中,利用知识蒸馏(Knowledge Distillation, KD)来提高紧凑学生网络的预测性能。然而,在伪知识蒸馏(pseudo - knowledge Distillation, PKD)中处理大规模注释不可用的同时,如何寻找最佳的师生对是一个挑战。为了克服这一挑战,提出了一种半监督方法;Semi-PKD。该方法涉及使用指数移动平均KD (EMA-KD)方法训练的教师网络在未标记数据上生成伪标签。EMA-KD方法通过获取自我知识,只利用学生网络,解决了最优师生对选择问题。Semi-PKD在各种评估指标上优于其他最先进的显著性预测模型。代码可在https://github.com/chakkritte/Semi-PKD上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信