Integrating machine learning with proof-of-authority-and-association for dynamic signer selection in blockchain networks

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Dong-Seong Kim , Rizal Syamsul
{"title":"Integrating machine learning with proof-of-authority-and-association for dynamic signer selection in blockchain networks","authors":"Dong-Seong Kim ,&nbsp;Rizal Syamsul","doi":"10.1016/j.icte.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating machine learning (ML) into blockchain consensus mechanisms enhances efficiency, scalability, and resilience. This study introduces the PoA<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> algorithm, an ML-enhanced Proof of Authority mechanism that optimizes signer selection for improved transaction processing. Simulations with models including Random Forest, Logistic Regression, SVM, K-Nearest Neighbors, Decision Tree, and Gradient Boosting showed significant gains. Random Forest reduced latency tenfold, achieving nearly 1000 transactions per second, with 93.33% accuracy, 100% precision, 86.67% recall, and a 92.86% F1-score. These results demonstrate ML’s potential to enhance blockchain performance, making hybrid blockchain-ML solutions a promising research direction.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 2","pages":"Pages 258-263"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001371","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating machine learning (ML) into blockchain consensus mechanisms enhances efficiency, scalability, and resilience. This study introduces the PoA2 algorithm, an ML-enhanced Proof of Authority mechanism that optimizes signer selection for improved transaction processing. Simulations with models including Random Forest, Logistic Regression, SVM, K-Nearest Neighbors, Decision Tree, and Gradient Boosting showed significant gains. Random Forest reduced latency tenfold, achieving nearly 1000 transactions per second, with 93.33% accuracy, 100% precision, 86.67% recall, and a 92.86% F1-score. These results demonstrate ML’s potential to enhance blockchain performance, making hybrid blockchain-ML solutions a promising research direction.
在区块链网络中集成机器学习与权威证明和关联,用于动态签名者选择
将机器学习(ML)集成到区块链共识机制中可以提高效率、可扩展性和弹性。本研究介绍了PoA2算法,这是一种ml增强的权威证明机制,可优化签名人选择以改进事务处理。使用随机森林、逻辑回归、支持向量机、k近邻、决策树和梯度增强等模型进行仿真显示了显著的增益。随机森林将延迟降低了10倍,实现了每秒近1000个事务,准确率为93.33%,精确度为100%,召回率为86.67%,f1得分为92.86%。这些结果证明了机器学习提高区块链性能的潜力,使混合区块链-机器学习解决方案成为一个有前途的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信