A review on multi-fidelity hyperparameter optimization in machine learning

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jonghyeon Won , Hyun-Suk Lee , Jang-Won Lee
{"title":"A review on multi-fidelity hyperparameter optimization in machine learning","authors":"Jonghyeon Won ,&nbsp;Hyun-Suk Lee ,&nbsp;Jang-Won Lee","doi":"10.1016/j.icte.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Tuning hyperparameters effectively is crucial for improving the performance of machine learning models. However, hyperparameter optimization (HPO) often demands significant computational budget, which is typically limited. Therefore, efficiently using this constrained budget is critical in HPO. <em>Multi-fidelity HPO</em> has emerged as a potential solution to this issue. This paper presents a comprehensive review of multi-fidelity HPO in machine learning, discusses recent algorithms for HPO, and proposes directions for future research.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 2","pages":"Pages 245-257"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525000244","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning hyperparameters effectively is crucial for improving the performance of machine learning models. However, hyperparameter optimization (HPO) often demands significant computational budget, which is typically limited. Therefore, efficiently using this constrained budget is critical in HPO. Multi-fidelity HPO has emerged as a potential solution to this issue. This paper presents a comprehensive review of multi-fidelity HPO in machine learning, discusses recent algorithms for HPO, and proposes directions for future research.
机器学习中多保真度超参数优化研究进展
有效地调优超参数对于提高机器学习模型的性能至关重要。然而,超参数优化(HPO)往往需要大量的计算预算,这通常是有限的。因此,在HPO中,有效地使用这种受限的预算是至关重要的。多保真HPO已经成为解决这一问题的潜在方法。本文对机器学习中的多保真度HPO进行了综述,讨论了HPO的最新算法,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信