Revealing novel insights into the improvement of greenhouse tea quality through exogenous substance interventions using targeted and untargeted metabolomics and microbial community analyses
Haozhen Li , Shuyao Wang , Xiaohua Zhang , Kangkang Song , Long Yang
{"title":"Revealing novel insights into the improvement of greenhouse tea quality through exogenous substance interventions using targeted and untargeted metabolomics and microbial community analyses","authors":"Haozhen Li , Shuyao Wang , Xiaohua Zhang , Kangkang Song , Long Yang","doi":"10.1016/j.fochx.2025.102410","DOIUrl":null,"url":null,"abstract":"<div><div>Tea quality in greenhouse was certain gap with open air. Metabolites and foliar microorganisms were investigated under seaweed fertiliser (CF) and gibberellin (CH) treatments using sensory evaluation, HPLC, untargeted metabolomics, 16S rDNA, and Internal Transcribed Spacer. CF tea was mellow, less astringent, and of better quality compared to CH. Catechin, −(−)Epicatechin, and Epigallocatechin were notably lower in CF. Differentially accumulated metabolites (DAMs) were notably enriched in Flavonoid and Phenylpropanoid biosynthesis, both involved in Catechin synthesis. DAMs in these pathways appeared down-regulated in CF. The CF improved quality by down-regulating metabolites in Phenylpropanoid biosynthesis in conjunction with microbial community metabolism enriched in amino acid and secondary metabolite biosynthesis. Metabolite- microbial correlation analysis indicated that the highest correlation with phenylpropane pathway metabolites was in bacteria <em>Variovorax</em> and <em>Pseudomonas</em>, and in fungi <em>Filobasidium</em>. The study provides theoretical basis for regulating flavour quality of greenhouse tea.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"27 ","pages":"Article 102410"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525002573","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Tea quality in greenhouse was certain gap with open air. Metabolites and foliar microorganisms were investigated under seaweed fertiliser (CF) and gibberellin (CH) treatments using sensory evaluation, HPLC, untargeted metabolomics, 16S rDNA, and Internal Transcribed Spacer. CF tea was mellow, less astringent, and of better quality compared to CH. Catechin, −(−)Epicatechin, and Epigallocatechin were notably lower in CF. Differentially accumulated metabolites (DAMs) were notably enriched in Flavonoid and Phenylpropanoid biosynthesis, both involved in Catechin synthesis. DAMs in these pathways appeared down-regulated in CF. The CF improved quality by down-regulating metabolites in Phenylpropanoid biosynthesis in conjunction with microbial community metabolism enriched in amino acid and secondary metabolite biosynthesis. Metabolite- microbial correlation analysis indicated that the highest correlation with phenylpropane pathway metabolites was in bacteria Variovorax and Pseudomonas, and in fungi Filobasidium. The study provides theoretical basis for regulating flavour quality of greenhouse tea.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.