A scalable energy internet approach for hop regulated peer-to-peer power trading with connectivity and preference constraints

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS
Neethu Maya , Bala Kameshwar Poolla , Seshadhri Srinivasan , Alessandra Parisio , Narasimman Sundararajan , Suresh Sundaram
{"title":"A scalable energy internet approach for hop regulated peer-to-peer power trading with connectivity and preference constraints","authors":"Neethu Maya ,&nbsp;Bala Kameshwar Poolla ,&nbsp;Seshadhri Srinivasan ,&nbsp;Alessandra Parisio ,&nbsp;Narasimman Sundararajan ,&nbsp;Suresh Sundaram","doi":"10.1016/j.segan.2025.101668","DOIUrl":null,"url":null,"abstract":"<div><div>Incentives to maximize Peer-to-Peer (P2P) power trading and the establishment of consumer-friendly distributed power markets are essential contributions to the decarbonization of the power sector. This paper presents a Connectivity and Preference Constrained Hop-Regulated Approach for Peer-to-Peer Trading (CPHPT) in sparsely connected communities with reduced infrastructure requirements. The CPHPT approach leverages graph theory to optimize P2P subscriber matching by regulating the maximum hops between the nodes in each routed path of P2P exchange. Simulations using real-world datasets in a 10-home community demonstrate that the CPHPT increases community participation by 29.49%, with P2P power exchanges comparable to full connectivity at reduced infrastructure requirements. When scaled to a 100-home community, the CPHPT approach achieves a marginal performance difference of 2.71% compared to full connectivity while lowering the connectivity infrastructure by 93.4%. The CPHPT approach has a mean runtime of 8.9 s for a 3-h window with 30-min intervals in a 100-home community, indicating its scalability and feasibility for real-time implementation.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"42 ","pages":"Article 101668"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467725000505","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Incentives to maximize Peer-to-Peer (P2P) power trading and the establishment of consumer-friendly distributed power markets are essential contributions to the decarbonization of the power sector. This paper presents a Connectivity and Preference Constrained Hop-Regulated Approach for Peer-to-Peer Trading (CPHPT) in sparsely connected communities with reduced infrastructure requirements. The CPHPT approach leverages graph theory to optimize P2P subscriber matching by regulating the maximum hops between the nodes in each routed path of P2P exchange. Simulations using real-world datasets in a 10-home community demonstrate that the CPHPT increases community participation by 29.49%, with P2P power exchanges comparable to full connectivity at reduced infrastructure requirements. When scaled to a 100-home community, the CPHPT approach achieves a marginal performance difference of 2.71% compared to full connectivity while lowering the connectivity infrastructure by 93.4%. The CPHPT approach has a mean runtime of 8.9 s for a 3-h window with 30-min intervals in a 100-home community, indicating its scalability and feasibility for real-time implementation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信