{"title":"A novel method for time-dependent small failure probability estimation of slope instability subjected to stochastic seismic excitations","authors":"Sihan Li , Xingliang Wang , Rui Pang , Bin Xu","doi":"10.1016/j.ress.2025.111032","DOIUrl":null,"url":null,"abstract":"<div><div>The computational demand limits the estimation of small failure probabilities in geotechnical engineering under seismic excitation. This study proposes a novel method to estimate the time-dependent small failure probability of slope instability under non-stationary random seismic excitation. Initially, the kernel density estimation (KDE) with appropriate bandwidth is employed for preliminary estimation with the permanent displacement time history is utilized as the evaluation metric for the extreme value distribution (EVD). Subsequently, the EVD is refined using a two-step approach: a shifted generalized lognormal distribution (SGLD) models the main components, while a quadratic function models the tail, enabling the derivation of probability of exceedance (POE) curves on a logarithmic scale. The proposed method's effectiveness is verified through examples of soil and rock slopes subjected to non-stationary random seismic excitation, comparing direct KDE and Monte Carlo simulation (MCS). Results show that the method accurately estimates small failure probabilities of slope instability, has strong numerical stability and flexibility for various slope conditions.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 111032"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002339","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The computational demand limits the estimation of small failure probabilities in geotechnical engineering under seismic excitation. This study proposes a novel method to estimate the time-dependent small failure probability of slope instability under non-stationary random seismic excitation. Initially, the kernel density estimation (KDE) with appropriate bandwidth is employed for preliminary estimation with the permanent displacement time history is utilized as the evaluation metric for the extreme value distribution (EVD). Subsequently, the EVD is refined using a two-step approach: a shifted generalized lognormal distribution (SGLD) models the main components, while a quadratic function models the tail, enabling the derivation of probability of exceedance (POE) curves on a logarithmic scale. The proposed method's effectiveness is verified through examples of soil and rock slopes subjected to non-stationary random seismic excitation, comparing direct KDE and Monte Carlo simulation (MCS). Results show that the method accurately estimates small failure probabilities of slope instability, has strong numerical stability and flexibility for various slope conditions.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.