Huanlu Xue, Qi Wang, Yu Zhang, Wei Zhang, Hailei Zhang, Tao Yu, Shimei Wang, Xin Liu, Jie Ma, Xiaojun Ma, Hao Shen, Zhaohong Mi
{"title":"High-Sensitivity Detection of Oxygen Impurities in Glow Discharge Polymers through Non-Rutherford Resonance Backscattering","authors":"Huanlu Xue, Qi Wang, Yu Zhang, Wei Zhang, Hailei Zhang, Tao Yu, Shimei Wang, Xin Liu, Jie Ma, Xiaojun Ma, Hao Shen, Zhaohong Mi","doi":"10.1021/acs.analchem.5c00077","DOIUrl":null,"url":null,"abstract":"Glow discharge polymers (GDP) are critical ablator materials for facilitating central ignition through implosions in the inertial confinement fusion (ICF). The presence of oxygen impurities within GDP targets has been identified as a factor in degrading the implosion performance. This effect may be technologically compensated for if the distribution of oxygen content within the target can be accurately assessed; however, this remains challenging. Here, we present the utilization of non-Rutherford resonant backscattering techniques for the high-sensitivity detection of oxygen impurities in GDP thin films. The non-Rutherford resonances significantly enhance the detection sensitivity for oxygen by a factor of 10 compared to conventional Rutherford backscattering methods. The oxygen impurities are found to predominantly concentrate at the surface of GDP samples, with a concentration exceeding 3 atomic percent (at.%). The depth profiling capability is extended to about 1.27 μm, which doubles that of conventional methods. Importantly, this study also addresses the challenges of radiation damage during ion beam analysis, highlighting the need for compensation factors to ensure accurate atomic concentration measurements. The findings provide valuable insights into impurity distributions in GDP materials, which can aid the precise control and optimization of experimental parameters for future ICF experiments. Additionally, these advancements offer the potential for various emerging applications, including photocatalysis, elemental analysis of lunar soil, and trace oxygen research in optoelectronic semiconductors.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"61 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00077","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glow discharge polymers (GDP) are critical ablator materials for facilitating central ignition through implosions in the inertial confinement fusion (ICF). The presence of oxygen impurities within GDP targets has been identified as a factor in degrading the implosion performance. This effect may be technologically compensated for if the distribution of oxygen content within the target can be accurately assessed; however, this remains challenging. Here, we present the utilization of non-Rutherford resonant backscattering techniques for the high-sensitivity detection of oxygen impurities in GDP thin films. The non-Rutherford resonances significantly enhance the detection sensitivity for oxygen by a factor of 10 compared to conventional Rutherford backscattering methods. The oxygen impurities are found to predominantly concentrate at the surface of GDP samples, with a concentration exceeding 3 atomic percent (at.%). The depth profiling capability is extended to about 1.27 μm, which doubles that of conventional methods. Importantly, this study also addresses the challenges of radiation damage during ion beam analysis, highlighting the need for compensation factors to ensure accurate atomic concentration measurements. The findings provide valuable insights into impurity distributions in GDP materials, which can aid the precise control and optimization of experimental parameters for future ICF experiments. Additionally, these advancements offer the potential for various emerging applications, including photocatalysis, elemental analysis of lunar soil, and trace oxygen research in optoelectronic semiconductors.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.