ProxDDP: Proximal Constrained Trajectory Optimization

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Wilson Jallet;Antoine Bambade;Etienne Arlaud;Sarah El-Kazdadi;Nicolas Mansard;Justin Carpentier
{"title":"ProxDDP: Proximal Constrained Trajectory Optimization","authors":"Wilson Jallet;Antoine Bambade;Etienne Arlaud;Sarah El-Kazdadi;Nicolas Mansard;Justin Carpentier","doi":"10.1109/TRO.2025.3554437","DOIUrl":null,"url":null,"abstract":"Trajectory optimization has been a popular choice for motion generation and control in robotics for at least a decade. Several numerical approaches have exhibited the required speed to enable online computation of trajectories for real-time of various systems, including complex robots. Many of these said are based on the differential dynamic programming (DDP) algorithm—initially designed for unconstrained trajectory optimization problems—and its variants, which are relatively easy to implement and provide good runtime performance. However, several problems in robot control call for using constrained formulations (e.g., torque limits, obstacle avoidance), from which several difficulties arise when trying to adapt DDP-type methods: numerical stability, computational efficiency, and constraint satisfaction. In this article, we leverage proximal methods for constrained optimization and introduce a DDP-type method for fast, constrained trajectory optimization suited for model-predictive control (MPC) applications with easy warm-starting. Compared to earlier solvers, our approach effectively manages hard constraints without warm-start limitations and exhibits good convergence behavior. We provide a complete implementation as part of an open-source and flexible C++ trajectory optimization library called <sc>aligator</small>. These algorithmic contributions are validated through several trajectory planning scenarios from the robotics literature and the real-time whole-body MPC of a quadruped robot.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2605-2624"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10938351/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory optimization has been a popular choice for motion generation and control in robotics for at least a decade. Several numerical approaches have exhibited the required speed to enable online computation of trajectories for real-time of various systems, including complex robots. Many of these said are based on the differential dynamic programming (DDP) algorithm—initially designed for unconstrained trajectory optimization problems—and its variants, which are relatively easy to implement and provide good runtime performance. However, several problems in robot control call for using constrained formulations (e.g., torque limits, obstacle avoidance), from which several difficulties arise when trying to adapt DDP-type methods: numerical stability, computational efficiency, and constraint satisfaction. In this article, we leverage proximal methods for constrained optimization and introduce a DDP-type method for fast, constrained trajectory optimization suited for model-predictive control (MPC) applications with easy warm-starting. Compared to earlier solvers, our approach effectively manages hard constraints without warm-start limitations and exhibits good convergence behavior. We provide a complete implementation as part of an open-source and flexible C++ trajectory optimization library called aligator. These algorithmic contributions are validated through several trajectory planning scenarios from the robotics literature and the real-time whole-body MPC of a quadruped robot.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信