Sven Liesenfelder, Mohamed H Elsafi Mabrouk, Jessica Iliescu, Monica Varona Baranda, Athanasia Mizi, Juan-Felipe Perez-Correa, Martina Wessiepe, Argyris Papantonis, Wolfgang Wagner
{"title":"Epigenetic editing at individual age-associated CpGs affects the genome-wide epigenetic aging landscape.","authors":"Sven Liesenfelder, Mohamed H Elsafi Mabrouk, Jessica Iliescu, Monica Varona Baranda, Athanasia Mizi, Juan-Felipe Perez-Correa, Martina Wessiepe, Argyris Papantonis, Wolfgang Wagner","doi":"10.1038/s43587-025-00841-1","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is reflected by genome-wide DNA methylation changes, which form the basis of epigenetic clocks, but it is largely unclear how these epigenetic modifications are regulated and whether they directly affect the aging process. In this study, we performed epigenetic editing at age-associated CpG sites to explore the consequences of interfering with epigenetic clocks. CRISPR-guided editing targeted at individual age-related CpGs evoked genome-wide bystander effects, which were highly reproducible and enriched at other age-associated regions. 4C-sequencing at age-associated sites revealed increased interactions with bystander modifications and other age-related CpGs. Subsequently, we multiplexed epigenetic editing in human T cells and mesenchymal stromal cells at five genomic regions that become either hypermethylated or hypomethylated upon aging. While targeted methylation seemed more stable at age-hypermethylated sites, both approaches induced bystander modifications at CpGs with the highest correlations with chronological age. Notably, these effects were simultaneously observed at CpGs that gain and lose methylation with age. Our results demonstrate that epigenetic editing can extensively modulate the epigenetic aging network and interfere with epigenetic clocks.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":17.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00841-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aging is reflected by genome-wide DNA methylation changes, which form the basis of epigenetic clocks, but it is largely unclear how these epigenetic modifications are regulated and whether they directly affect the aging process. In this study, we performed epigenetic editing at age-associated CpG sites to explore the consequences of interfering with epigenetic clocks. CRISPR-guided editing targeted at individual age-related CpGs evoked genome-wide bystander effects, which were highly reproducible and enriched at other age-associated regions. 4C-sequencing at age-associated sites revealed increased interactions with bystander modifications and other age-related CpGs. Subsequently, we multiplexed epigenetic editing in human T cells and mesenchymal stromal cells at five genomic regions that become either hypermethylated or hypomethylated upon aging. While targeted methylation seemed more stable at age-hypermethylated sites, both approaches induced bystander modifications at CpGs with the highest correlations with chronological age. Notably, these effects were simultaneously observed at CpGs that gain and lose methylation with age. Our results demonstrate that epigenetic editing can extensively modulate the epigenetic aging network and interfere with epigenetic clocks.