Yuta Maetani, Takashi Kurashige, Yui Tada, Kodai Kume, Tomoaki Watanabe, Yusuke Sotomaru, Koji Yamanaka, Hirofumi Maruyama, Hideshi Kawakami
{"title":"Optineurin knock-out forms TDP-43 aggregates to regulate TDP-43 protein levels despite autophagic up-regulation and aberrant TDP-43 expression.","authors":"Yuta Maetani, Takashi Kurashige, Yui Tada, Kodai Kume, Tomoaki Watanabe, Yusuke Sotomaru, Koji Yamanaka, Hirofumi Maruyama, Hideshi Kawakami","doi":"10.1016/j.neures.2025.03.005","DOIUrl":null,"url":null,"abstract":"<p><p>Optineurin is a causative gene of amyotrophic lateral sclerosis (ALS) and has many roles in processes such as autophagy and inflammation. However, it is unclear how optineurin causes ALS. Optineurin knock-out (Optn-KO) mice, which have been generated by several researchers, exhibit motor neuron degeneration and TDP-43 aggregates, but no motor deficits. Motor dysfunction in ALS model mice is associated with TDP-43 in the spinal cord. We bred Optn-KO mice with TDP-43 overexpression transgenic mice and evaluated whether increased TDP-43 protein causes motor deficits and whether Optn-KO affects TDP-43 protein level. Optn-KO mice had spinal TDP-43 protein levels and motor function comparable to wild-type mice, and TDP-43-transgenic (TDP-43-tg) mice resulted in motor dysfunction and early death. However, double-mutant TDP-43-tg / Optn-KO mice had lower TDP-43 protein levels than TDP-43-tg mice at 18 months age, and showed inhibition of the TBK1-optinerurin autophagic pathway with aging. Furthermore, Optn-KO caused TDP-43-positive cytoplasmic aggregates. TDP-43 overexpression by itself induced spinal microgliosis, but Optn-KO suppressed that microgliosis. Finally, we showed that Optn-KO mice could not exhibit behavioral dysfunction because TDP-43 protein levels were not elevated despite autophagy inhibition. Thus, downregulation of Optn may suppress TDP-43 toxicity by regulating its abundance through aggregate formation.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2025.03.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Optineurin is a causative gene of amyotrophic lateral sclerosis (ALS) and has many roles in processes such as autophagy and inflammation. However, it is unclear how optineurin causes ALS. Optineurin knock-out (Optn-KO) mice, which have been generated by several researchers, exhibit motor neuron degeneration and TDP-43 aggregates, but no motor deficits. Motor dysfunction in ALS model mice is associated with TDP-43 in the spinal cord. We bred Optn-KO mice with TDP-43 overexpression transgenic mice and evaluated whether increased TDP-43 protein causes motor deficits and whether Optn-KO affects TDP-43 protein level. Optn-KO mice had spinal TDP-43 protein levels and motor function comparable to wild-type mice, and TDP-43-transgenic (TDP-43-tg) mice resulted in motor dysfunction and early death. However, double-mutant TDP-43-tg / Optn-KO mice had lower TDP-43 protein levels than TDP-43-tg mice at 18 months age, and showed inhibition of the TBK1-optinerurin autophagic pathway with aging. Furthermore, Optn-KO caused TDP-43-positive cytoplasmic aggregates. TDP-43 overexpression by itself induced spinal microgliosis, but Optn-KO suppressed that microgliosis. Finally, we showed that Optn-KO mice could not exhibit behavioral dysfunction because TDP-43 protein levels were not elevated despite autophagy inhibition. Thus, downregulation of Optn may suppress TDP-43 toxicity by regulating its abundance through aggregate formation.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.