Ruixia Wu, Xiao Juan Zhao, Yaxin Du, Yizhi Dong, Xinyue Song, Yong Zhu
{"title":"Lipid metabolic disorders and their impact on cartilage endplate and nucleus pulposus function in intervertebral disk degeneration.","authors":"Ruixia Wu, Xiao Juan Zhao, Yaxin Du, Yizhi Dong, Xinyue Song, Yong Zhu","doi":"10.3389/fnut.2025.1533264","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid metabolism encompasses the processes of digestion, absorption, synthesis, and degradation of fats within biological systems, playing a crucial role in sustaining normal physiological functions. Disorders of lipid metabolism, characterized by abnormal blood lipid levels and dysregulated fatty acid metabolism, have emerged as significant contributors to intervertebral disk degeneration (IDD). The pathogenesis of IDD is multifaceted, encompassing genetic predispositions, nutritional and metabolic factors, mechanical stressors, trauma, and inflammatory responses, which collectively facilitate the progression of IDD. Although the precise mechanisms underlying IDD remain incompletely elucidated, there is substantial consensus regarding the close association between lipid metabolism disorders and its development. Intervertebral disks are essential for maintaining spinal alignment. Their primary functions encompass shock absorption, preservation of physiological curvature, facilitation of movement, and provision of stability. The elasticity and thickness of these disks effectively absorb daily impacts, safeguard the spine, uphold its natural curvature and flexibility, while also creating space for nerve roots to prevent compression and ensure normal transmission of nerve signals. Research indicates that such metabolic disturbances may compromise the functionality of cartilaginous endplates (CEP) and nucleus pulposus (NP), thereby facilitating IDD's onset and progression. The CEP is integral to internal material exchange and shock absorption while mitigating NP herniation under mechanical load conditions. As the central component of intervertebral disks, NP is essential for maintaining disk height and providing shock-absorbing capabilities; thus, damage to these critical structures accelerates IDD progression. Furthermore, lipid metabolism disorders contribute to IDD through mechanisms including activation of endoplasmic reticulum stress pathways, enhancement of oxidative stress levels, induction of cellular pyroptosis alongside inhibition of autophagy processes-coupled with the promotion of inflammation-induced fibrosis and fibroblast proliferation leading to calcification within intervertebral disks. This review delineates the intricate interplay between lipid metabolism disorders and IDD; it is anticipated that advancing our understanding of this pathogenesis will pave the way for more effective preventive measures and therapeutic strategies against IDD in future research.</p>","PeriodicalId":12473,"journal":{"name":"Frontiers in Nutrition","volume":"12 ","pages":"1533264"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931516/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fnut.2025.1533264","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid metabolism encompasses the processes of digestion, absorption, synthesis, and degradation of fats within biological systems, playing a crucial role in sustaining normal physiological functions. Disorders of lipid metabolism, characterized by abnormal blood lipid levels and dysregulated fatty acid metabolism, have emerged as significant contributors to intervertebral disk degeneration (IDD). The pathogenesis of IDD is multifaceted, encompassing genetic predispositions, nutritional and metabolic factors, mechanical stressors, trauma, and inflammatory responses, which collectively facilitate the progression of IDD. Although the precise mechanisms underlying IDD remain incompletely elucidated, there is substantial consensus regarding the close association between lipid metabolism disorders and its development. Intervertebral disks are essential for maintaining spinal alignment. Their primary functions encompass shock absorption, preservation of physiological curvature, facilitation of movement, and provision of stability. The elasticity and thickness of these disks effectively absorb daily impacts, safeguard the spine, uphold its natural curvature and flexibility, while also creating space for nerve roots to prevent compression and ensure normal transmission of nerve signals. Research indicates that such metabolic disturbances may compromise the functionality of cartilaginous endplates (CEP) and nucleus pulposus (NP), thereby facilitating IDD's onset and progression. The CEP is integral to internal material exchange and shock absorption while mitigating NP herniation under mechanical load conditions. As the central component of intervertebral disks, NP is essential for maintaining disk height and providing shock-absorbing capabilities; thus, damage to these critical structures accelerates IDD progression. Furthermore, lipid metabolism disorders contribute to IDD through mechanisms including activation of endoplasmic reticulum stress pathways, enhancement of oxidative stress levels, induction of cellular pyroptosis alongside inhibition of autophagy processes-coupled with the promotion of inflammation-induced fibrosis and fibroblast proliferation leading to calcification within intervertebral disks. This review delineates the intricate interplay between lipid metabolism disorders and IDD; it is anticipated that advancing our understanding of this pathogenesis will pave the way for more effective preventive measures and therapeutic strategies against IDD in future research.
期刊介绍:
No subject pertains more to human life than nutrition. The aim of Frontiers in Nutrition is to integrate major scientific disciplines in this vast field in order to address the most relevant and pertinent questions and developments. Our ambition is to create an integrated podium based on original research, clinical trials, and contemporary reviews to build a reputable knowledge forum in the domains of human health, dietary behaviors, agronomy & 21st century food science. Through the recognized open-access Frontiers platform we welcome manuscripts to our dedicated sections relating to different areas in the field of nutrition with a focus on human health.
Specialty sections in Frontiers in Nutrition include, for example, Clinical Nutrition, Nutrition & Sustainable Diets, Nutrition and Food Science Technology, Nutrition Methodology, Sport & Exercise Nutrition, Food Chemistry, and Nutritional Immunology. Based on the publication of rigorous scientific research, we thrive to achieve a visible impact on the global nutrition agenda addressing the grand challenges of our time, including obesity, malnutrition, hunger, food waste, sustainability and consumer health.