Enhancing accuracy and efficiency in cyclic liquefaction modeling: An automatic calibration framework for advanced constitutive models

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jan Machaček , Sheng Zeng , Mahdi Taiebat
{"title":"Enhancing accuracy and efficiency in cyclic liquefaction modeling: An automatic calibration framework for advanced constitutive models","authors":"Jan Machaček ,&nbsp;Sheng Zeng ,&nbsp;Mahdi Taiebat","doi":"10.1016/j.compgeo.2025.107208","DOIUrl":null,"url":null,"abstract":"<div><div>Precise calibration of constitutive models for cyclic liquefaction is essential but often time-consuming and requires significant expertise, limiting broader application in geotechnical practice. This paper introduces an automatic calibration tool designed to streamline the process for advanced constitutive models under both monotonic and cyclic loading. The tool supports various types of monotonic and cyclic laboratory test data, offers multiple choices of suitable comparison planes for error calculation, with a focus to also suit cyclic liquefaction problems, and employs advanced optimization techniques. The calibration follows a two-stage approach: first, optimizing parameters governing monotonic response using monotonic test data; second, refining these and additional parameters with both monotonic and cyclic data. The critical state parameters are fixed throughout, while the elasticity parameters are fixed in the second stage, all within defined bounds. Using this automatic calibration tool and the adapted calibration strategy, extensive element-level test data was used to determine the parameters of the SANISAND-MSf model for a given sand. These calibrated parameters were then used to simulate boundary value problems, including centrifuge tests of liquefiable sand slopes and sheet-pile-supported liquefiable sand deposits, all subjected to base excitations, demonstrating excellent alignment with experimental results. This validation highlights the robustness, reproducibility, and accuracy of the tool to model cyclic liquefaction while significantly reducing the expertise and time required for calibration. This represents a significant advancement toward the broader adoption of advanced constitutive soil models in geotechnical engineering practice.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"183 ","pages":"Article 107208"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Precise calibration of constitutive models for cyclic liquefaction is essential but often time-consuming and requires significant expertise, limiting broader application in geotechnical practice. This paper introduces an automatic calibration tool designed to streamline the process for advanced constitutive models under both monotonic and cyclic loading. The tool supports various types of monotonic and cyclic laboratory test data, offers multiple choices of suitable comparison planes for error calculation, with a focus to also suit cyclic liquefaction problems, and employs advanced optimization techniques. The calibration follows a two-stage approach: first, optimizing parameters governing monotonic response using monotonic test data; second, refining these and additional parameters with both monotonic and cyclic data. The critical state parameters are fixed throughout, while the elasticity parameters are fixed in the second stage, all within defined bounds. Using this automatic calibration tool and the adapted calibration strategy, extensive element-level test data was used to determine the parameters of the SANISAND-MSf model for a given sand. These calibrated parameters were then used to simulate boundary value problems, including centrifuge tests of liquefiable sand slopes and sheet-pile-supported liquefiable sand deposits, all subjected to base excitations, demonstrating excellent alignment with experimental results. This validation highlights the robustness, reproducibility, and accuracy of the tool to model cyclic liquefaction while significantly reducing the expertise and time required for calibration. This represents a significant advancement toward the broader adoption of advanced constitutive soil models in geotechnical engineering practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信