Xiaohua Bao , Zhizao Bao , Lijuan Li , Peng Peng , Jun Shen , Yingpeng Li , Xiangsheng Chen , Feng Zhang
{"title":"A modified VG model for the SWCC of fiber-reinforced sand","authors":"Xiaohua Bao , Zhizao Bao , Lijuan Li , Peng Peng , Jun Shen , Yingpeng Li , Xiangsheng Chen , Feng Zhang","doi":"10.1016/j.compgeo.2025.107215","DOIUrl":null,"url":null,"abstract":"<div><div>Fibre reinforcement technology has been widely adopted in soil improvement due to its cost-effectiveness, simplicity, and environmental benefits. In many fibre reinforcement projects, the soil is often in an unsaturated state. However, the numerical simulation mechanisms of fibre-reinforced unsaturated soils remain poorly understood. In this study, a Vangenuchten (VG) model considering fibre incorporating fibres was proposed based on the original VG model. This model considering fibre accurately describes the soil water characteristic curve (SWCC) of fibre-reinforced sand (FRS), as verified by water-holding characteristics tests. Then, unsaturated triaxial tests confirmed the applicability of an unsaturated soil elastoplastic constitutive model and a fully coupled soil–water-air finite element-finite difference (FE-FD) method for simulating the mechanical behaviour of unsaturated FRS. Finally, using the SWCC parameters derived from the VG model considering fibres and mechanical parameters from saturated triaxial tests, slope models were established to analyse the stability of both unreinforced and fibre-reinforced slopes. The results show that the interweaving action of fibres within the soil enhances its strength, reduce permeability, and decreases both saturation and pore water pressure, ultimately increasing slope stability. This study provides valuable insights into the SWCC characteristics and the numerical calculation of FRS under unsaturated conditions.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"183 ","pages":"Article 107215"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25001648","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Fibre reinforcement technology has been widely adopted in soil improvement due to its cost-effectiveness, simplicity, and environmental benefits. In many fibre reinforcement projects, the soil is often in an unsaturated state. However, the numerical simulation mechanisms of fibre-reinforced unsaturated soils remain poorly understood. In this study, a Vangenuchten (VG) model considering fibre incorporating fibres was proposed based on the original VG model. This model considering fibre accurately describes the soil water characteristic curve (SWCC) of fibre-reinforced sand (FRS), as verified by water-holding characteristics tests. Then, unsaturated triaxial tests confirmed the applicability of an unsaturated soil elastoplastic constitutive model and a fully coupled soil–water-air finite element-finite difference (FE-FD) method for simulating the mechanical behaviour of unsaturated FRS. Finally, using the SWCC parameters derived from the VG model considering fibres and mechanical parameters from saturated triaxial tests, slope models were established to analyse the stability of both unreinforced and fibre-reinforced slopes. The results show that the interweaving action of fibres within the soil enhances its strength, reduce permeability, and decreases both saturation and pore water pressure, ultimately increasing slope stability. This study provides valuable insights into the SWCC characteristics and the numerical calculation of FRS under unsaturated conditions.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.