Effect and mechanism of thiourea on indium electrocrystallization in sulfate electrolyte

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zeyu Wang , Xun Wang , Bo Li , Yonggang Wei , Hua Wang
{"title":"Effect and mechanism of thiourea on indium electrocrystallization in sulfate electrolyte","authors":"Zeyu Wang ,&nbsp;Xun Wang ,&nbsp;Bo Li ,&nbsp;Yonggang Wei ,&nbsp;Hua Wang","doi":"10.1016/j.mssp.2025.109493","DOIUrl":null,"url":null,"abstract":"<div><div>In the realm of advanced technologies, indium is a critical metal with wide-ranging applications, and the efficient purification of indium has emerged as a topic of significant industrial interest. This study investigates the use of gelatin and thiourea as additives to mitigate the adverse effects of dendrite growth during indium electrolysis. Additionally, agitation was incorporated into the electrolysis process to further enhance the morphology of cathodic indium deposition. Under optimal conditions of 0.5 g/L gelatin and 0.05 g/L thiourea, current efficiency increased by 6.2 %, while the recovery improved by 5.7 %. Scanning electron microscopy (SEM) was employed to examine the dendritic growth of indium on titanium electrodes. The findings indicated that the combination of gelatin, thiourea, and stirring led to a more compact and uniform coating. The electrodeposition mechanisms of indium in various electrolytic environments were further elucidated through cyclic voltammetry and chronoamperometry, revealing that under the influence of gelatin and thiourea, the nucleation process on titanium shifted to a continuous mode.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"193 ","pages":"Article 109493"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125002306","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of advanced technologies, indium is a critical metal with wide-ranging applications, and the efficient purification of indium has emerged as a topic of significant industrial interest. This study investigates the use of gelatin and thiourea as additives to mitigate the adverse effects of dendrite growth during indium electrolysis. Additionally, agitation was incorporated into the electrolysis process to further enhance the morphology of cathodic indium deposition. Under optimal conditions of 0.5 g/L gelatin and 0.05 g/L thiourea, current efficiency increased by 6.2 %, while the recovery improved by 5.7 %. Scanning electron microscopy (SEM) was employed to examine the dendritic growth of indium on titanium electrodes. The findings indicated that the combination of gelatin, thiourea, and stirring led to a more compact and uniform coating. The electrodeposition mechanisms of indium in various electrolytic environments were further elucidated through cyclic voltammetry and chronoamperometry, revealing that under the influence of gelatin and thiourea, the nucleation process on titanium shifted to a continuous mode.
硫脲对硫酸电解质中铟电结晶的影响及机理
在先进技术领域,铟是一种具有广泛应用的关键金属,铟的高效提纯已成为工业领域的重要课题。本研究探讨了明胶和硫脲作为添加剂对铟电解过程中枝晶生长的不利影响。此外,在电解过程中加入搅拌以进一步改善阴极铟沉积的形貌。在明胶用量为0.5 g/L、硫脲用量为0.05 g/L的条件下,电流效率提高6.2%,回收率提高5.7%。采用扫描电镜(SEM)观察了钛电极上铟枝晶的生长情况。研究结果表明,明胶、硫脲和搅拌的结合使涂层更加致密和均匀。通过循环伏安法和计时电流法进一步阐明了铟在不同电解环境下的电沉积机理,发现在明胶和硫脲的作用下,钛的成核过程转变为连续模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信