A parallel large-scale multiobjective evolutionary algorithm based on two-space decomposition

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Feng Yin, Bin Cao
{"title":"A parallel large-scale multiobjective evolutionary algorithm based on two-space decomposition","authors":"Feng Yin, Bin Cao","doi":"10.1007/s40747-025-01835-7","DOIUrl":null,"url":null,"abstract":"<p>Decomposition is an effective and popular strategy used by evolutionary algorithms to solve multiobjective optimization problems (MOPs). It can reduce the difficulty of directly solving MOPs, increase the diversity of the obtained solutions, and facilitate parallel computing. However, with the increase of the number of decision variables, the performance of multiobjective evolutionary algorithms (MOEAs) often deteriorates sharply. The advantages of the decomposition strategy are not fully exploited when solving such large-scale MOPs (LSMOPs). To this end, this paper proposes a parallel MOEA based on two-space decomposition (TSD) to solve LSMOPs. The main idea of the algorithm is to decompose the objective space and decision space into multiple subspaces, each of which is expected to contain some complete Pareto-optimal solutions, and then use multiple populations to conduct parallel searches in these subspaces. Specifically, the objective space decomposition approach adopts the traditional reference vector-based method, whereas the decision space decomposition approach adopts the proposed method based on a <i>diversity design subspace</i> (DDS). The algorithm uses a message passing interface (MPI) to implement its parallel environment. The experimental results demonstrate the effectiveness of the proposed DDS-based method. Compared with the state-of-the-art MOEAs in solving various benchmark and real-world problems, the proposed algorithm exhibits advantages in terms of general performance and computational efficiency.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"41 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01835-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Decomposition is an effective and popular strategy used by evolutionary algorithms to solve multiobjective optimization problems (MOPs). It can reduce the difficulty of directly solving MOPs, increase the diversity of the obtained solutions, and facilitate parallel computing. However, with the increase of the number of decision variables, the performance of multiobjective evolutionary algorithms (MOEAs) often deteriorates sharply. The advantages of the decomposition strategy are not fully exploited when solving such large-scale MOPs (LSMOPs). To this end, this paper proposes a parallel MOEA based on two-space decomposition (TSD) to solve LSMOPs. The main idea of the algorithm is to decompose the objective space and decision space into multiple subspaces, each of which is expected to contain some complete Pareto-optimal solutions, and then use multiple populations to conduct parallel searches in these subspaces. Specifically, the objective space decomposition approach adopts the traditional reference vector-based method, whereas the decision space decomposition approach adopts the proposed method based on a diversity design subspace (DDS). The algorithm uses a message passing interface (MPI) to implement its parallel environment. The experimental results demonstrate the effectiveness of the proposed DDS-based method. Compared with the state-of-the-art MOEAs in solving various benchmark and real-world problems, the proposed algorithm exhibits advantages in terms of general performance and computational efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信