{"title":"A parallel large-scale multiobjective evolutionary algorithm based on two-space decomposition","authors":"Feng Yin, Bin Cao","doi":"10.1007/s40747-025-01835-7","DOIUrl":null,"url":null,"abstract":"<p>Decomposition is an effective and popular strategy used by evolutionary algorithms to solve multiobjective optimization problems (MOPs). It can reduce the difficulty of directly solving MOPs, increase the diversity of the obtained solutions, and facilitate parallel computing. However, with the increase of the number of decision variables, the performance of multiobjective evolutionary algorithms (MOEAs) often deteriorates sharply. The advantages of the decomposition strategy are not fully exploited when solving such large-scale MOPs (LSMOPs). To this end, this paper proposes a parallel MOEA based on two-space decomposition (TSD) to solve LSMOPs. The main idea of the algorithm is to decompose the objective space and decision space into multiple subspaces, each of which is expected to contain some complete Pareto-optimal solutions, and then use multiple populations to conduct parallel searches in these subspaces. Specifically, the objective space decomposition approach adopts the traditional reference vector-based method, whereas the decision space decomposition approach adopts the proposed method based on a <i>diversity design subspace</i> (DDS). The algorithm uses a message passing interface (MPI) to implement its parallel environment. The experimental results demonstrate the effectiveness of the proposed DDS-based method. Compared with the state-of-the-art MOEAs in solving various benchmark and real-world problems, the proposed algorithm exhibits advantages in terms of general performance and computational efficiency.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"41 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01835-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Decomposition is an effective and popular strategy used by evolutionary algorithms to solve multiobjective optimization problems (MOPs). It can reduce the difficulty of directly solving MOPs, increase the diversity of the obtained solutions, and facilitate parallel computing. However, with the increase of the number of decision variables, the performance of multiobjective evolutionary algorithms (MOEAs) often deteriorates sharply. The advantages of the decomposition strategy are not fully exploited when solving such large-scale MOPs (LSMOPs). To this end, this paper proposes a parallel MOEA based on two-space decomposition (TSD) to solve LSMOPs. The main idea of the algorithm is to decompose the objective space and decision space into multiple subspaces, each of which is expected to contain some complete Pareto-optimal solutions, and then use multiple populations to conduct parallel searches in these subspaces. Specifically, the objective space decomposition approach adopts the traditional reference vector-based method, whereas the decision space decomposition approach adopts the proposed method based on a diversity design subspace (DDS). The algorithm uses a message passing interface (MPI) to implement its parallel environment. The experimental results demonstrate the effectiveness of the proposed DDS-based method. Compared with the state-of-the-art MOEAs in solving various benchmark and real-world problems, the proposed algorithm exhibits advantages in terms of general performance and computational efficiency.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.