Appropriate Fat Supplementation in High-Starch Diets Involved in the Modification of Fatty Acids Profile, Amino Acids Composition, and Antioxidant Capacity of Adult Nile Tilapia (Oreochromis niloticus) Muscle

IF 3 2区 农林科学 Q1 FISHERIES
Jianmin Zhang, Ningning Xie, Ming Jiang, Lixue Dong, Hua Wen, Juan Tian
{"title":"Appropriate Fat Supplementation in High-Starch Diets Involved in the Modification of Fatty Acids Profile, Amino Acids Composition, and Antioxidant Capacity of Adult Nile Tilapia (Oreochromis niloticus) Muscle","authors":"Jianmin Zhang,&nbsp;Ningning Xie,&nbsp;Ming Jiang,&nbsp;Lixue Dong,&nbsp;Hua Wen,&nbsp;Juan Tian","doi":"10.1155/anu/7139771","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Tilapia industry has faced great challenges due to the replacement of high-quality protein sources by a high proportion of starch. Meanwhile, the level of dietary fat is gradually reduced with the increase of oil price. High starch diets have been proved to have negative effects on flesh quality in previous studies, but the effects of fat remain unclear. The objective of the present study was to ascertain whether fat level is a requisite factor in the flesh quality of adult fish under conditions of high-starch diet feeding. The study involved adult Nile tilapia (<i>Oreochromis niloticus</i>) with an initial body weight (IBW) of 168.58 ± 2.01 g, which were fed a standard (CON) diet, a high-starch-low-fat (HSLF) diet, and a high-starch-moderate-fat (HSMF) diet for 10 weeks. The results demonstrated that the high starch diets significantly decreased the hardness, chewiness, springiness, and gumminess of muscle. HSLF diet led to a significant reduction in the weight gain rate (WGR), accompanied by an increase in crude fat content and a decrease in glycogen content in the muscle. The HSLF diet resulted in a reduction in the levels of polyunsaturated fatty acids (PUFAs), essential amino acids (EAAs), and flavor amino acids (FAAs) in the muscle tissue. Furthermore, it influenced muscle texture by reducing collagen content, fiber density, and sarcomere length. The muscle antioxidant capacity was diminished by affecting the total antioxidant capacity (T-AOC), catalase (CAT) activity, and superoxide dismutase (SOD) activity, as well as the expression levels of related genes (<i>SOD</i>, <i>CAT</i>, and nuclear factor erythroid 2 like 2 (<i>nrf2</i>)). In contrast, the HSMF diet did not have a detrimental impact on growth performance, yet it did result in a significant increase in glycogen content, hydroxyproline (Hyp), PUFAs, EAA, and FAA in muscle tissue. Moreover, the HSMF diet was observed to markedly elevate the antioxidant capacity of the muscle. It can be concluded that high-starch diet can significantly affect flesh quality by affecting the texture and muscle nutrients, as well as decreasing antioxidant capacity. Nevertheless, the inclusion of an adequate quantity of fat may prove an effective means of counteracting these unfavorable outcomes.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/7139771","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/7139771","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Tilapia industry has faced great challenges due to the replacement of high-quality protein sources by a high proportion of starch. Meanwhile, the level of dietary fat is gradually reduced with the increase of oil price. High starch diets have been proved to have negative effects on flesh quality in previous studies, but the effects of fat remain unclear. The objective of the present study was to ascertain whether fat level is a requisite factor in the flesh quality of adult fish under conditions of high-starch diet feeding. The study involved adult Nile tilapia (Oreochromis niloticus) with an initial body weight (IBW) of 168.58 ± 2.01 g, which were fed a standard (CON) diet, a high-starch-low-fat (HSLF) diet, and a high-starch-moderate-fat (HSMF) diet for 10 weeks. The results demonstrated that the high starch diets significantly decreased the hardness, chewiness, springiness, and gumminess of muscle. HSLF diet led to a significant reduction in the weight gain rate (WGR), accompanied by an increase in crude fat content and a decrease in glycogen content in the muscle. The HSLF diet resulted in a reduction in the levels of polyunsaturated fatty acids (PUFAs), essential amino acids (EAAs), and flavor amino acids (FAAs) in the muscle tissue. Furthermore, it influenced muscle texture by reducing collagen content, fiber density, and sarcomere length. The muscle antioxidant capacity was diminished by affecting the total antioxidant capacity (T-AOC), catalase (CAT) activity, and superoxide dismutase (SOD) activity, as well as the expression levels of related genes (SOD, CAT, and nuclear factor erythroid 2 like 2 (nrf2)). In contrast, the HSMF diet did not have a detrimental impact on growth performance, yet it did result in a significant increase in glycogen content, hydroxyproline (Hyp), PUFAs, EAA, and FAA in muscle tissue. Moreover, the HSMF diet was observed to markedly elevate the antioxidant capacity of the muscle. It can be concluded that high-starch diet can significantly affect flesh quality by affecting the texture and muscle nutrients, as well as decreasing antioxidant capacity. Nevertheless, the inclusion of an adequate quantity of fat may prove an effective means of counteracting these unfavorable outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquaculture Nutrition
Aquaculture Nutrition 农林科学-渔业
CiteScore
7.20
自引率
8.60%
发文量
131
审稿时长
3 months
期刊介绍: Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers. Aquaculture Nutrition publishes papers which strive to: increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research. improve understanding of the relationships between nutrition and the environmental impact of aquaculture. increase understanding of the relationships between nutrition and processing, product quality, and the consumer. help aquaculturalists improve their management and understanding of the complex discipline of nutrition. help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信