{"title":"Adolescent alcohol consumption produces long term changes in response inhibition and orbitofrontal-striatal activity in a sex-specific manner","authors":"Aqilah M. McCane, Lo Kronheim, Bita Moghaddam","doi":"10.1016/j.dcn.2025.101552","DOIUrl":null,"url":null,"abstract":"<div><div>Alcohol use disorder (AUD) is strongly associated with initiation of drinking during adolescence. Little is known about neural mechanisms that produce the long-term detrimental effects of adolescent drinking. A critical feature of AUD is deficits in response inhibition, or the ability to withhold a reward-seeking response. Here, we sought to determine if adolescent drinking affects response inhibition and encoding of neural events by the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS), two regions critical for expression of response inhibition. Adolescent male and female rats were given access to alcohol for four hours a day for five consecutive days. Then, rats were tested in a cued response inhibition task as adolescents or adults while we recorded concomitantly from the OFC and DMS. Adolescent voluntary alcohol drinking impaired response inhibition and increased alcohol drinking in male but not female rats. Adolescent alcohol drinking was associated with reduced excitation following premature actions in adults and increased OFC-DMS synchrony in male but not female rats. Collectively, these data suggest sex-specific effects of adolescent alcohol drinking on response inhibition and corresponding alterations in cortical-striatal circuitry.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"73 ","pages":"Article 101552"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000477","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alcohol use disorder (AUD) is strongly associated with initiation of drinking during adolescence. Little is known about neural mechanisms that produce the long-term detrimental effects of adolescent drinking. A critical feature of AUD is deficits in response inhibition, or the ability to withhold a reward-seeking response. Here, we sought to determine if adolescent drinking affects response inhibition and encoding of neural events by the orbitofrontal cortex (OFC) and dorsomedial striatum (DMS), two regions critical for expression of response inhibition. Adolescent male and female rats were given access to alcohol for four hours a day for five consecutive days. Then, rats were tested in a cued response inhibition task as adolescents or adults while we recorded concomitantly from the OFC and DMS. Adolescent voluntary alcohol drinking impaired response inhibition and increased alcohol drinking in male but not female rats. Adolescent alcohol drinking was associated with reduced excitation following premature actions in adults and increased OFC-DMS synchrony in male but not female rats. Collectively, these data suggest sex-specific effects of adolescent alcohol drinking on response inhibition and corresponding alterations in cortical-striatal circuitry.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.