Fabrication process analysis on Sb2(SxSe1-x)3-based material properties and solar cell performance via machine learning

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
A․N․ Olimov , T․M․ Razykov , K․M․ Kuchkarov , B․A․ Ergashev , A․X․ Shukurov , U․K․ Makhmanov , A․A․ Mavlonov
{"title":"Fabrication process analysis on Sb2(SxSe1-x)3-based material properties and solar cell performance via machine learning","authors":"A․N․ Olimov ,&nbsp;T․M․ Razykov ,&nbsp;K․M․ Kuchkarov ,&nbsp;B․A․ Ergashev ,&nbsp;A․X․ Shukurov ,&nbsp;U․K․ Makhmanov ,&nbsp;A․A․ Mavlonov","doi":"10.1016/j.tsf.2025.140660","DOIUrl":null,"url":null,"abstract":"<div><div>The optimization of the fabrication process of Sb<sub>2</sub>(S<em><sub>x</sub></em>Se<sub>1-</sub><em><sub>x</sub></em>)<sub>3</sub> thin-films and studying the interplay between the parameters of their growth conditions to improve the performance of solar cells using traditional experimental methods requires more time and resources. In this work, we explore the application of machine learning (ML) techniques using the experimental data from peer-reviewed reports to optimize the fabrication process of Sb<sub>2</sub>(S<em><sub>x</sub></em>Se<sub>1-</sub><em><sub>x</sub></em>)<sub>3</sub> thin films, targeting to enhance the device performance. The optimized ML models demonstrate high accuracy in predicting the power conversion efficiency with a root mean square error of 1% and a Pearson coefficient of 0.9. Furthermore, the Shapley additive explanations method is employed to rank the fabrication parameters that have an impact on the solar cell performance. Finally, the results obtained are validated through their consistency with theory and experimental verification.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"817 ","pages":"Article 140660"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000616","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The optimization of the fabrication process of Sb2(SxSe1-x)3 thin-films and studying the interplay between the parameters of their growth conditions to improve the performance of solar cells using traditional experimental methods requires more time and resources. In this work, we explore the application of machine learning (ML) techniques using the experimental data from peer-reviewed reports to optimize the fabrication process of Sb2(SxSe1-x)3 thin films, targeting to enhance the device performance. The optimized ML models demonstrate high accuracy in predicting the power conversion efficiency with a root mean square error of 1% and a Pearson coefficient of 0.9. Furthermore, the Shapley additive explanations method is employed to rank the fabrication parameters that have an impact on the solar cell performance. Finally, the results obtained are validated through their consistency with theory and experimental verification.
基于机器学习的Sb2(sxs1 -x)3基材料性能和太阳能电池性能制备工艺分析
利用传统的实验方法优化Sb2(SxSe1-x)3薄膜的制备工艺,研究其生长条件参数之间的相互作用,以提高太阳能电池的性能,需要更多的时间和资源。在这项工作中,我们利用同行评审报告中的实验数据,探索机器学习(ML)技术的应用,以优化Sb2(SxSe1-x)3薄膜的制造工艺,旨在提高器件性能。优化后的ML模型对功率转换效率的预测精度较高,均方根误差为1%,Pearson系数为0.9。此外,采用Shapley加性解释法对影响太阳能电池性能的制造参数进行了排序。最后,通过理论和实验验证验证了所得结果的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信