Effect of oxygen concentration on volatile compounds and their formation in Keemun black tea fermentation

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yanqun Jiang , Zhenbin Chen , Jixin Zhang , Wei Zhao , Caiyan Sheng , Mingxia Lu , Tiehan Li , Jingming Ning
{"title":"Effect of oxygen concentration on volatile compounds and their formation in Keemun black tea fermentation","authors":"Yanqun Jiang ,&nbsp;Zhenbin Chen ,&nbsp;Jixin Zhang ,&nbsp;Wei Zhao ,&nbsp;Caiyan Sheng ,&nbsp;Mingxia Lu ,&nbsp;Tiehan Li ,&nbsp;Jingming Ning","doi":"10.1016/j.foodres.2025.116266","DOIUrl":null,"url":null,"abstract":"<div><div>Fermentation is a key process in the production of Keemun black tea (KBT), and oxygen, time, temperature, and humidity are key factors affecting black tea fermentation. However, the effect of oxygen concentration on the aroma quality of KBT remains unclear. To deeply investigate the effect of oxygen concentration (16 %, 21 %, 35 %, and 45 %) on the volatile compounds of KBT during fermentation, the aroma characteristics of tea fermented with different oxygen concentrations were assessed. A total of 80 volatile compounds were detected based on gas chromatography–mass spectrometry. Gas chromatography-olfactometry, modified detection frequency, odor activity value, and <em>p</em>-values demonstrated that ten aroma-active compounds, including phenylethyl alcohol, geranyl alcohol, and linalool, that were more significantly altered by oxygen were the key compounds contributing to the differences in the aroma of KBT, and their aroma contributions were confirmed by subsequent aroma addition experiments. Additionally, the role of oxygen in the formation of key compounds was further investigated. The results revealed that oxygen-enriched fermentation significantly increased the total concentration of volatile compounds and yielded stronger sweet and fruity aromas, whereas low-oxygen fermentation resulted in weak and single aromas. This study provides new insights into the effect of oxygen on the volatile compounds of KBT and provides theoretical support for the production of high-flavor KBT.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"208 ","pages":"Article 116266"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925006039","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fermentation is a key process in the production of Keemun black tea (KBT), and oxygen, time, temperature, and humidity are key factors affecting black tea fermentation. However, the effect of oxygen concentration on the aroma quality of KBT remains unclear. To deeply investigate the effect of oxygen concentration (16 %, 21 %, 35 %, and 45 %) on the volatile compounds of KBT during fermentation, the aroma characteristics of tea fermented with different oxygen concentrations were assessed. A total of 80 volatile compounds were detected based on gas chromatography–mass spectrometry. Gas chromatography-olfactometry, modified detection frequency, odor activity value, and p-values demonstrated that ten aroma-active compounds, including phenylethyl alcohol, geranyl alcohol, and linalool, that were more significantly altered by oxygen were the key compounds contributing to the differences in the aroma of KBT, and their aroma contributions were confirmed by subsequent aroma addition experiments. Additionally, the role of oxygen in the formation of key compounds was further investigated. The results revealed that oxygen-enriched fermentation significantly increased the total concentration of volatile compounds and yielded stronger sweet and fruity aromas, whereas low-oxygen fermentation resulted in weak and single aromas. This study provides new insights into the effect of oxygen on the volatile compounds of KBT and provides theoretical support for the production of high-flavor KBT.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信