Preparation of edible oleogels via encapsulation of high-oleic palm oil using spray drying: Structural characterization and their application as fat substitutes in ice cream
Miguel Caldas-Abril , Katherine Bauer-Estrada , Mateo Gallardo-Salas , Valentina Bonilla-Bravo , Sara Pacheco-Pappenheim , Maria Ximena Quintanilla-Carvajal
{"title":"Preparation of edible oleogels via encapsulation of high-oleic palm oil using spray drying: Structural characterization and their application as fat substitutes in ice cream","authors":"Miguel Caldas-Abril , Katherine Bauer-Estrada , Mateo Gallardo-Salas , Valentina Bonilla-Bravo , Sara Pacheco-Pappenheim , Maria Ximena Quintanilla-Carvajal","doi":"10.1016/j.fhfh.2025.100207","DOIUrl":null,"url":null,"abstract":"<div><div>The necessity of fats in the human diet for essential fatty acids, energy provision, and nutrient absorption is well recognized, yet traditional sources often come with health concerns. Recent dietary guidelines emphasize replacing harmful fatty acids with healthier alternatives, primarily poly and mono-unsaturated fatty acids. However, such reformulations often compromise product quality and consumer acceptance. To address this challenge, oleogelation emerges as a promising strategy, offering structurally sound alternatives derived from vegetable liquid oils. This paper explores the utilization of emulsion-templated oleogels, particularly focusing on high-oleic palm oil (HOPO), as a fat replacer in ice cream formulation. A spray-dried high-oleic palm powder serves as the precursor for oleogelation, aiming to enrich the final product with desirable unsaturated fatty acids such as vaccenic, oleic, and linoleic acids. The study investigated the impact of spray-drying process parameters and ice cream storage time on the physical properties of reconstituted oleogels and the textural attributes of ice cream.</div><div>Additionally, the <em>in vitro</em> simulated digestion and bioaccessibility of the optimal HOPO oleogel were examined. Results showed that HOPO oleogel-based ice cream had comparable textural, structural, rheological, thermal and physical properties in comparison to the traditional formula, while delivering to the intestine ∼90 % of unsaturated fatty acids present in HOPO. Moreover, low water content and particle size were crucial for obtaining high quality palatable ice creams.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100207"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025925000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The necessity of fats in the human diet for essential fatty acids, energy provision, and nutrient absorption is well recognized, yet traditional sources often come with health concerns. Recent dietary guidelines emphasize replacing harmful fatty acids with healthier alternatives, primarily poly and mono-unsaturated fatty acids. However, such reformulations often compromise product quality and consumer acceptance. To address this challenge, oleogelation emerges as a promising strategy, offering structurally sound alternatives derived from vegetable liquid oils. This paper explores the utilization of emulsion-templated oleogels, particularly focusing on high-oleic palm oil (HOPO), as a fat replacer in ice cream formulation. A spray-dried high-oleic palm powder serves as the precursor for oleogelation, aiming to enrich the final product with desirable unsaturated fatty acids such as vaccenic, oleic, and linoleic acids. The study investigated the impact of spray-drying process parameters and ice cream storage time on the physical properties of reconstituted oleogels and the textural attributes of ice cream.
Additionally, the in vitro simulated digestion and bioaccessibility of the optimal HOPO oleogel were examined. Results showed that HOPO oleogel-based ice cream had comparable textural, structural, rheological, thermal and physical properties in comparison to the traditional formula, while delivering to the intestine ∼90 % of unsaturated fatty acids present in HOPO. Moreover, low water content and particle size were crucial for obtaining high quality palatable ice creams.