Min Qing, Cheng Huang, Yueyuan Li, Qiubo Yu, Qianfang Hu, Jing Zhou, Ruo Yuan* and Lijuan Bai*,
{"title":"Dithiothreitol Facilitates LbCas12a with Expanded PAM Preference for Ultrasensitive Nucleic Acid Detection","authors":"Min Qing, Cheng Huang, Yueyuan Li, Qiubo Yu, Qianfang Hu, Jing Zhou, Ruo Yuan* and Lijuan Bai*, ","doi":"10.1021/acs.analchem.5c0028010.1021/acs.analchem.5c00280","DOIUrl":null,"url":null,"abstract":"<p >Clustered regularly interspaced short palindromic repeats-associated (CRISPR/Cas) proteins have been used for a growing class of in vitro molecular diagnostics due to their modularity and high specificity in targeting nucleic acid. However, the requirement of a protospacer adjacent motif (PAM) for Cas protein-catalyzed trans-cleavage poses a challenge for random nucleic acid detection. Here, we demonstrate that dithiothreitol (DTT) enables LbCas12a to adopt a relaxed preference for PAM base pairing, thereby expanding the target sequence space. Accordingly, we propose a DTT-mediated CRISPR/Cas12a toolbox (DTT-deCRISPR) that exhibits relaxed PAM specificity and is readily compatible with nucleic acid amplification techniques including recombinase polymerase amplification (RPA) and polymerase chain reaction (PCR). As a proof of concept, we integrate DTT-deCRISPR with frequently used PCR for sensitively and selectively detecting high-risk human papillomavirus (HPV) 16 and 18. The platform demonstrates the ability to detect synthesized HPV 16 and 18 plasmids down to 1 aM within 60 min. Based on the receiver operating characteristic curve analysis, the clinical sensitivities of the developed method for detecting HPV 16 and 18 are 93.75% and 80.00%, respectively. We further incorporate it into a lateral flow assay (LFA) for point-of-care detection, and the HPV 16 and HPV 18 abundances determined by LFA for clinical samples are consistent with the fluorescence analysis results. Together, this work uncovers an unexpected connection between DTT and PAM preferences of LbCas12a, promoting the universality and flexibility of CRISPR technology in molecular diagnostics.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 11","pages":"6286–6294 6286–6294"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c00280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced short palindromic repeats-associated (CRISPR/Cas) proteins have been used for a growing class of in vitro molecular diagnostics due to their modularity and high specificity in targeting nucleic acid. However, the requirement of a protospacer adjacent motif (PAM) for Cas protein-catalyzed trans-cleavage poses a challenge for random nucleic acid detection. Here, we demonstrate that dithiothreitol (DTT) enables LbCas12a to adopt a relaxed preference for PAM base pairing, thereby expanding the target sequence space. Accordingly, we propose a DTT-mediated CRISPR/Cas12a toolbox (DTT-deCRISPR) that exhibits relaxed PAM specificity and is readily compatible with nucleic acid amplification techniques including recombinase polymerase amplification (RPA) and polymerase chain reaction (PCR). As a proof of concept, we integrate DTT-deCRISPR with frequently used PCR for sensitively and selectively detecting high-risk human papillomavirus (HPV) 16 and 18. The platform demonstrates the ability to detect synthesized HPV 16 and 18 plasmids down to 1 aM within 60 min. Based on the receiver operating characteristic curve analysis, the clinical sensitivities of the developed method for detecting HPV 16 and 18 are 93.75% and 80.00%, respectively. We further incorporate it into a lateral flow assay (LFA) for point-of-care detection, and the HPV 16 and HPV 18 abundances determined by LFA for clinical samples are consistent with the fluorescence analysis results. Together, this work uncovers an unexpected connection between DTT and PAM preferences of LbCas12a, promoting the universality and flexibility of CRISPR technology in molecular diagnostics.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.