Searching for topological carbon allotropes and the possible nontrivial quasi-particle states in them

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qing-Bo Liu , Lun Xiong , Ziyang Yu , Hua-Hua Fu
{"title":"Searching for topological carbon allotropes and the possible nontrivial quasi-particle states in them","authors":"Qing-Bo Liu ,&nbsp;Lun Xiong ,&nbsp;Ziyang Yu ,&nbsp;Hua-Hua Fu","doi":"10.1016/j.mtphys.2025.101700","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon, as one of the most abundant elements on earth, possesses numerous allotropes that display a diverse range of physical properties. In this study, we utilized ab initio calculations and symmetry analyses to investigate 703 carbon allotropes, leading to the discovery of 315 (32) topological phononic (electronic) materials with ideal nontrivial characteristics. The topological phonons encompass single, charge-two, three, and four Weyl phonons, as well as Dirac (Weyl) node-lines phonons. Topological electronic states include topological insulators, Dirac points (Type-II), triple nodal points, and more. To verify this significant discovery, we adopt several real carbon allotropes with <span><math><mrow><mi>u</mi><mi>n</mi><mi>i</mi></mrow></math></span> (<span><math><mrow><mi>p</mi><mi>b</mi><mi>g</mi></mrow></math></span>) structure within space group (SG) No 178 (230) to showcase their topological characteristics. The <span><math><mrow><mi>u</mi><mi>n</mi><mi>i</mi></mrow></math></span> structure exhibits a combination of single-pair Weyl phonons and one-nodal surface phonons, resulting in a single surface arc in the (100) surface Brillouin zone (BZ) and isolated double-helix surface states in the (110) surface BZ. In the topological semimetal <span><math><mrow><mi>p</mi><mi>b</mi><mi>g</mi></mrow></math></span>, perfect triple degenerate nodal points near the Fermi level are found, resulting in distinct surface states in the (001) and (110) surfaces BZ. This research not only significantly broadens our understanding of topological quasi-particle states in carbon allotropes, but also offer a valuable material platform for further exploration of topological electrons and phonons in light element materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"53 ","pages":"Article 101700"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000562","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon, as one of the most abundant elements on earth, possesses numerous allotropes that display a diverse range of physical properties. In this study, we utilized ab initio calculations and symmetry analyses to investigate 703 carbon allotropes, leading to the discovery of 315 (32) topological phononic (electronic) materials with ideal nontrivial characteristics. The topological phonons encompass single, charge-two, three, and four Weyl phonons, as well as Dirac (Weyl) node-lines phonons. Topological electronic states include topological insulators, Dirac points (Type-II), triple nodal points, and more. To verify this significant discovery, we adopt several real carbon allotropes with uni (pbg) structure within space group (SG) No 178 (230) to showcase their topological characteristics. The uni structure exhibits a combination of single-pair Weyl phonons and one-nodal surface phonons, resulting in a single surface arc in the (100) surface Brillouin zone (BZ) and isolated double-helix surface states in the (110) surface BZ. In the topological semimetal pbg, perfect triple degenerate nodal points near the Fermi level are found, resulting in distinct surface states in the (001) and (110) surfaces BZ. This research not only significantly broadens our understanding of topological quasi-particle states in carbon allotropes, but also offer a valuable material platform for further exploration of topological electrons and phonons in light element materials.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信