Oil content, fatty acids profile, phenolic compounds and biological activity of the seeds from wild Medicago species growing in Iran

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Ziba Bakhtiar, Mohammadreza Hassandokht, Maryam Fallah, Hassan Rezadoost, Mohammad Hossein Mirjalili
{"title":"Oil content, fatty acids profile, phenolic compounds and biological activity of the seeds from wild Medicago species growing in Iran","authors":"Ziba Bakhtiar,&nbsp;Mohammadreza Hassandokht,&nbsp;Maryam Fallah,&nbsp;Hassan Rezadoost,&nbsp;Mohammad Hossein Mirjalili","doi":"10.1186/s40538-025-00758-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Medicago</i> is a significant genus of the Fabaceae family, and the most important species of this genus is <i>M. sativa</i> L., which is cultivated as fodder crops around the world. This study investigates the agro-morphological traits, the content of oils, fatty acids, condensed tannins, total triterpene saponins, and phenolic compounds, as well as biological activities across the seeds of 18 populations from six Iranian <i>Medicago</i> species (<i>M. crassipes</i> (Boiss.) E.Small, <i>M. monantha</i> (C.A.Mey.) Trautv., <i>M. monspeliaca</i> (L.) Trautv., <i>M. orthoceras</i> (Kar. &amp; Kir.) Trautv., <i>M. phrygia</i> (Boiss. &amp; Balansa) E.Small, and <i>M. sativa</i>).</p><h3>Results</h3><p>The findings reveal that seeds of <i>M. sativa</i> and <i>M. phrygia</i> have high oil (9.07 ± 0.05–10.64 ± 0.10%), linoleic acid (31.45 ± 0.54–38.67 ± 0.42%), quercetin (512.12 ± 4.20–574.76 ± 8.75 µg/g dry weight), and apigenin (170.12 ± 2.50–214.23 ± 4.63 µg/g dry weight) content, demonstrating significant antioxidant potential (108.45 ± 0.35–135.55 ± 0.40 μg/ml and 139.35 ± 0.75‒149.47 ± 1.40 μmol Fe<sup>+2</sup>/g dry weight). The seed oils exhibit significant antimicrobial activity against a range of both Gram-positive and Gram-negative bacteria, with a minimum inhibitory concentration (MIC) of less than 2 mg/ml across all studied species and populations, indicating strong antibacterial capabilities. Among the species studied, <i>M. sativa</i> and <i>M. phrygia</i> demonstrated the lowest MIC values against the tested bacteria (0.418–0.954 mg/ml) and fungi (0.405–0.940 mg/ml).</p><h3>Conclusions</h3><p>The findings underscore the importance of these <i>Medicago</i> species in both breeding programs and the development of health-related products.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00758-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00758-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Medicago is a significant genus of the Fabaceae family, and the most important species of this genus is M. sativa L., which is cultivated as fodder crops around the world. This study investigates the agro-morphological traits, the content of oils, fatty acids, condensed tannins, total triterpene saponins, and phenolic compounds, as well as biological activities across the seeds of 18 populations from six Iranian Medicago species (M. crassipes (Boiss.) E.Small, M. monantha (C.A.Mey.) Trautv., M. monspeliaca (L.) Trautv., M. orthoceras (Kar. & Kir.) Trautv., M. phrygia (Boiss. & Balansa) E.Small, and M. sativa).

Results

The findings reveal that seeds of M. sativa and M. phrygia have high oil (9.07 ± 0.05–10.64 ± 0.10%), linoleic acid (31.45 ± 0.54–38.67 ± 0.42%), quercetin (512.12 ± 4.20–574.76 ± 8.75 µg/g dry weight), and apigenin (170.12 ± 2.50–214.23 ± 4.63 µg/g dry weight) content, demonstrating significant antioxidant potential (108.45 ± 0.35–135.55 ± 0.40 μg/ml and 139.35 ± 0.75‒149.47 ± 1.40 μmol Fe+2/g dry weight). The seed oils exhibit significant antimicrobial activity against a range of both Gram-positive and Gram-negative bacteria, with a minimum inhibitory concentration (MIC) of less than 2 mg/ml across all studied species and populations, indicating strong antibacterial capabilities. Among the species studied, M. sativa and M. phrygia demonstrated the lowest MIC values against the tested bacteria (0.418–0.954 mg/ml) and fungi (0.405–0.940 mg/ml).

Conclusions

The findings underscore the importance of these Medicago species in both breeding programs and the development of health-related products.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信