Methyltransferase-like enzyme 14 exacerbates retinal ganglion cell damage and diabetic retinopathy through N6-methyladenosine-dependent upregulation of pleckstrin homology domain and leucine rich repeat protein phosphatase 2
Li Chen, Ting Wei, Xuan Liu, Lijun Cui, Conghui Hu, Yumeng Quan
{"title":"Methyltransferase-like enzyme 14 exacerbates retinal ganglion cell damage and diabetic retinopathy through N6-methyladenosine-dependent upregulation of pleckstrin homology domain and leucine rich repeat protein phosphatase 2","authors":"Li Chen, Ting Wei, Xuan Liu, Lijun Cui, Conghui Hu, Yumeng Quan","doi":"10.1016/j.taap.2025.117304","DOIUrl":null,"url":null,"abstract":"<div><div>N6-methyladenosine (m6A) modification of pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2), mediated by methyltransferase-like enzyme 14 (METTL14), plays a critical role in regulating PHLPP2 expression across various pathological conditions. This study aims to ascertain whether METTL14 influences m6A methylation of PHLPP2 in diabetic retinopathy (DR) and to delineate the precise function of the METTL14/PHLPP2 axis in disease progression. METTL14 levels were observed to be elevated in retinas of DR rats and in HG-stimulated RGCs, coinciding with an increase in PHLPP2 m6A modification. Knockdown of METTL14 resulted in significant reductions in PHLPP2 expression and its m6A modification. Silencing METTL14 mitigated HG-induced damage in RGCs, which was linked to the inhibition of apoptosis, oxidative stress and inflammation. This protective effect could be negated through the restoration of PHLPP2. METTL14 knockdown modulated the AKT/GSK–3β/Nrf2 signal cascade through PHLPP2. Silencing METTL14 resulted in the downregulation of METTL14 and PHLPP2 in the retinas of DR rats, ameliorated visual function impairment and reduced the pathological alterations. These protective effects of METTL14 silencing against DR were also weakened when PHLPP2 was restored. Overall, these results suggest that suppressing METTL14 improves HG-induced damage in RGCs and protects against DR by downregulating PHLPP2 through m6A modification.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"498 ","pages":"Article 117304"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000808","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) modification of pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2), mediated by methyltransferase-like enzyme 14 (METTL14), plays a critical role in regulating PHLPP2 expression across various pathological conditions. This study aims to ascertain whether METTL14 influences m6A methylation of PHLPP2 in diabetic retinopathy (DR) and to delineate the precise function of the METTL14/PHLPP2 axis in disease progression. METTL14 levels were observed to be elevated in retinas of DR rats and in HG-stimulated RGCs, coinciding with an increase in PHLPP2 m6A modification. Knockdown of METTL14 resulted in significant reductions in PHLPP2 expression and its m6A modification. Silencing METTL14 mitigated HG-induced damage in RGCs, which was linked to the inhibition of apoptosis, oxidative stress and inflammation. This protective effect could be negated through the restoration of PHLPP2. METTL14 knockdown modulated the AKT/GSK–3β/Nrf2 signal cascade through PHLPP2. Silencing METTL14 resulted in the downregulation of METTL14 and PHLPP2 in the retinas of DR rats, ameliorated visual function impairment and reduced the pathological alterations. These protective effects of METTL14 silencing against DR were also weakened when PHLPP2 was restored. Overall, these results suggest that suppressing METTL14 improves HG-induced damage in RGCs and protects against DR by downregulating PHLPP2 through m6A modification.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.