Security Control of Safety-Critical Systems.

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yi Dong, Yiguang Hong, Jie Chen
{"title":"Security Control of Safety-Critical Systems.","authors":"Yi Dong, Yiguang Hong, Jie Chen","doi":"10.1109/TCYB.2025.3545422","DOIUrl":null,"url":null,"abstract":"<p><p>This article considers the security control problem of a safety-critical system, described by a general nonlinear uncertain system with constraints for collision avoidance and internal dynamic limitations. We design an integrated security and safety-critical control law to prevent the system from operating in the unsafe mode under denial-of-service (DoS) attacks in the signal transmission channels. By combining the internal model principle and the time-and event-triggered sampling mechanism for DoS detection, an improved dynamic compensator is first proposed and converts the safety tracking problem into the attractivity problem of the constrained error system. Then a security control is constructed for the error system by integrating the safety-critical controller in the barrier function-based framework. Finally, we prove that the integrated control design can guarantee the security, safety, and stability of the closed-loop system.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2025.3545422","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers the security control problem of a safety-critical system, described by a general nonlinear uncertain system with constraints for collision avoidance and internal dynamic limitations. We design an integrated security and safety-critical control law to prevent the system from operating in the unsafe mode under denial-of-service (DoS) attacks in the signal transmission channels. By combining the internal model principle and the time-and event-triggered sampling mechanism for DoS detection, an improved dynamic compensator is first proposed and converts the safety tracking problem into the attractivity problem of the constrained error system. Then a security control is constructed for the error system by integrating the safety-critical controller in the barrier function-based framework. Finally, we prove that the integrated control design can guarantee the security, safety, and stability of the closed-loop system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信