Fourier-transform infrared spectroscopy detects changes in macromolecules of banana (Musa spp.) in vitro under cadmium toxicity, modulated by iron and zinc application

IF 2.4 4区 生物学 Q2 PLANT SCIENCES
Marwa T. El-Mahdy, Dalia A. Abdel-Wahab, Doaa S. Elazab
{"title":"Fourier-transform infrared spectroscopy detects changes in macromolecules of banana (Musa spp.) in vitro under cadmium toxicity, modulated by iron and zinc application","authors":"Marwa T. El-Mahdy,&nbsp;Dalia A. Abdel-Wahab,&nbsp;Doaa S. Elazab","doi":"10.1007/s11738-025-03796-3","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd) is a widespread and strongly toxic environmental pollutant. In this study, the interaction between Cd and essential nutritional metals, such as iron (Fe) and zinc (Zn), was investigated in banana plants (<i>Musa</i> spp. cultivar Grand Nain), cultured in vitro, using Fourier-transform infrared (FT-IR) and physiological analysis. Plantlets were treated in vitro with Fe and Zn (200 and 500 mg/L) under 500 mg/L Cd exposure. The results showed that Cd toxicity increased Cd uptake and raised % of damage. However, Fe and Zn addition ameliorated the negative impact of Cd stress by reducing Cd and enhancing Fe, Zn, P, and K contents. The FT-IR analysis showed alterations within the bands correlated to the foremost macromolecules in plants under Cd stress and its interactions with Fe or Zn. The peaks of some functional groups at 3381.7 cm<sup>−1</sup> for carbohydrates, proteins, alcohols, and phenolic compounds, 2922.02 cm<sup>−1</sup> for lipids, 1643.97 cm<sup>−1</sup> for amide I, 1517.46 cm<sup>−1</sup> for amide II, 1057.63 cm<sup>−1</sup> for cellulose and hemicellulose, and 616.94 cm<sup>−1</sup> for aromatic compounds were negatively shifted by Cd stress. However, Fe and Zn regulated transmittance and intensity of these bands, showing improved tolerance to Cd. Moreover, Fe and Zn modulated the total antioxidants and enzymatic antioxidant activities for catalase and ascorbate peroxidase. The study concluded that the nutrition with Fe and Zn enhanced banana tolerance against Cd toxicity. It also highlighted the powerful role of FT-IR in understanding the mechanisms involved in minimizing Cd toxicity in banana shoots under Fe and Zn.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03796-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) is a widespread and strongly toxic environmental pollutant. In this study, the interaction between Cd and essential nutritional metals, such as iron (Fe) and zinc (Zn), was investigated in banana plants (Musa spp. cultivar Grand Nain), cultured in vitro, using Fourier-transform infrared (FT-IR) and physiological analysis. Plantlets were treated in vitro with Fe and Zn (200 and 500 mg/L) under 500 mg/L Cd exposure. The results showed that Cd toxicity increased Cd uptake and raised % of damage. However, Fe and Zn addition ameliorated the negative impact of Cd stress by reducing Cd and enhancing Fe, Zn, P, and K contents. The FT-IR analysis showed alterations within the bands correlated to the foremost macromolecules in plants under Cd stress and its interactions with Fe or Zn. The peaks of some functional groups at 3381.7 cm−1 for carbohydrates, proteins, alcohols, and phenolic compounds, 2922.02 cm−1 for lipids, 1643.97 cm−1 for amide I, 1517.46 cm−1 for amide II, 1057.63 cm−1 for cellulose and hemicellulose, and 616.94 cm−1 for aromatic compounds were negatively shifted by Cd stress. However, Fe and Zn regulated transmittance and intensity of these bands, showing improved tolerance to Cd. Moreover, Fe and Zn modulated the total antioxidants and enzymatic antioxidant activities for catalase and ascorbate peroxidase. The study concluded that the nutrition with Fe and Zn enhanced banana tolerance against Cd toxicity. It also highlighted the powerful role of FT-IR in understanding the mechanisms involved in minimizing Cd toxicity in banana shoots under Fe and Zn.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信