Dna coding theory and algorithms

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jin Xu, Wenbin Liu, Kai Zhang, Enqiang Zhu
{"title":"Dna coding theory and algorithms","authors":"Jin Xu,&nbsp;Wenbin Liu,&nbsp;Kai Zhang,&nbsp;Enqiang Zhu","doi":"10.1007/s10462-025-11132-x","DOIUrl":null,"url":null,"abstract":"<div><p>DNA computing is an emerging computational model that has garnered significant attention due to its distinctive advantages at the molecular biological level. Since it was introduced by Adelman in 1994, this field has made remarkable progress in solving <b>NP</b>-complete problems, enhancing information security, encrypting images, controlling diseases, and advancing nanotechnology. A key challenge in DNA computing is the design of DNA coding, which aims to minimize nonspecific hybridization and enhance computational reliability. The DNA coding design is a classical combinatorial optimization problem focused on generating high-quality DNA sequences that meet specific constraints, including distance, thermodynamics, secondary structure, and sequence requirements. This paper comprehensively examines the advances in DNA coding design, highlighting mathematical models, counting theory, and commonly used DNA coding methods. These methods include the template method, multi-objective evolutionary methods, and implicit enumeration techniques.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11132-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11132-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

DNA computing is an emerging computational model that has garnered significant attention due to its distinctive advantages at the molecular biological level. Since it was introduced by Adelman in 1994, this field has made remarkable progress in solving NP-complete problems, enhancing information security, encrypting images, controlling diseases, and advancing nanotechnology. A key challenge in DNA computing is the design of DNA coding, which aims to minimize nonspecific hybridization and enhance computational reliability. The DNA coding design is a classical combinatorial optimization problem focused on generating high-quality DNA sequences that meet specific constraints, including distance, thermodynamics, secondary structure, and sequence requirements. This paper comprehensively examines the advances in DNA coding design, highlighting mathematical models, counting theory, and commonly used DNA coding methods. These methods include the template method, multi-objective evolutionary methods, and implicit enumeration techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信