{"title":"FPGA Assessment Methodology of Adverse X-Ray Effects on Secure Digital Circuits","authors":"Nasr-Eddine Ouldei Tebina;Luc Salvo;Nacer-Eddine Zergainoh;Guillaume Hubert;Paolo Maistri","doi":"10.1109/TDMR.2025.3538484","DOIUrl":null,"url":null,"abstract":"Recent research demonstrates the feasibility of X-ray attacks. Unlike traditional fault injection methods, X-rays offer precise spatial targeting because of their short wavelength and high penetration power. This allows attackers to selectively target specific regions within a device, from individual transistors to larger blocks. This necessitates a new perspective on hardening techniques, requiring designers to consider the impact of X-ray irradiation on both fault injection and power consumption. To address this challenge, the paper proposes a characterization flow that analyzes the differences in side-channel leakages of FPGA components and their susceptibility to increased leakage due to X-ray effects. Despite the fundamental differences between ASIC and FPGA layouts, they both share the characteristic of being MOS technology-based, which makes them both susceptible to TID effects. The simulation results strongly support the theory that X-rays can induce leakage currents, thereby amplifying the side-channel information leakage observed in our experiments on FPGAs. Furthermore, these results provide concrete evidence that different FPGA components exhibit varying susceptibility to X-ray-induced leakage. Our findings reveal a clear hierarchy of vulnerability, with interconnects being the most susceptible elements, followed by registers, and lastly, logic components (LUTs and MUXes). This differential vulnerability offers valuable information for designers of secure cryptographic circuits. By understanding how X-rays impact different components, hardening techniques can be strategically targeted to provide the most effective protection against both fault injection and side-channel leakage.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"85-94"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10899869/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research demonstrates the feasibility of X-ray attacks. Unlike traditional fault injection methods, X-rays offer precise spatial targeting because of their short wavelength and high penetration power. This allows attackers to selectively target specific regions within a device, from individual transistors to larger blocks. This necessitates a new perspective on hardening techniques, requiring designers to consider the impact of X-ray irradiation on both fault injection and power consumption. To address this challenge, the paper proposes a characterization flow that analyzes the differences in side-channel leakages of FPGA components and their susceptibility to increased leakage due to X-ray effects. Despite the fundamental differences between ASIC and FPGA layouts, they both share the characteristic of being MOS technology-based, which makes them both susceptible to TID effects. The simulation results strongly support the theory that X-rays can induce leakage currents, thereby amplifying the side-channel information leakage observed in our experiments on FPGAs. Furthermore, these results provide concrete evidence that different FPGA components exhibit varying susceptibility to X-ray-induced leakage. Our findings reveal a clear hierarchy of vulnerability, with interconnects being the most susceptible elements, followed by registers, and lastly, logic components (LUTs and MUXes). This differential vulnerability offers valuable information for designers of secure cryptographic circuits. By understanding how X-rays impact different components, hardening techniques can be strategically targeted to provide the most effective protection against both fault injection and side-channel leakage.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.