Degradation Behavior and Mechanism of SONOS FLASH by Total Ionization Dose Effects

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Y. D. Wei;G. Z. Liu;J. H. Wei;W. Zhao;Y. Q. Wei;Y. Zhou;Z. Y. Sui;M. J. Liu;H. Ju;Y. Gao;H. Yang;J. P. Sun;Y. Liu
{"title":"Degradation Behavior and Mechanism of SONOS FLASH by Total Ionization Dose Effects","authors":"Y. D. Wei;G. Z. Liu;J. H. Wei;W. Zhao;Y. Q. Wei;Y. Zhou;Z. Y. Sui;M. J. Liu;H. Ju;Y. Gao;H. Yang;J. P. Sun;Y. Liu","doi":"10.1109/TDMR.2024.3524100","DOIUrl":null,"url":null,"abstract":"In this paper, the 2T SONOS FLASH is designed and fabricated based on 180 nm embedded FLASH process which includes one MOSFET and one SONOS FLASH transistor. The FLASH transistors are programmed and erased by band-to-band tunneling-induced hot electron and Fowler-Nordheim to realize different levels, and the mechanisms of the electrical degradation caused by radiation are investigated by the mid-gap technique. In order to clarify the degradation mechanism from the physical level, the first principle calculations are performed from the atomic and electronic term. The electric fields and the external environment are proved to play a crucial role in the charge loss. The higher electric fields can exacerbate the formation of the oxide charge, and the anti-radiation hardness can be achieved with oxygen-rich environment. The external field can efficiently change the electronic properties of <inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>-SiO2 with oxygen vacancy and hydrogen. This study provides a novel perspective of electrical degradations on the SONOS FLASH unit in different levels from both the experiments and theoretical simulations, which can be helpful for the design of advanced computational chips in space.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"128-133"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10818448/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the 2T SONOS FLASH is designed and fabricated based on 180 nm embedded FLASH process which includes one MOSFET and one SONOS FLASH transistor. The FLASH transistors are programmed and erased by band-to-band tunneling-induced hot electron and Fowler-Nordheim to realize different levels, and the mechanisms of the electrical degradation caused by radiation are investigated by the mid-gap technique. In order to clarify the degradation mechanism from the physical level, the first principle calculations are performed from the atomic and electronic term. The electric fields and the external environment are proved to play a crucial role in the charge loss. The higher electric fields can exacerbate the formation of the oxide charge, and the anti-radiation hardness can be achieved with oxygen-rich environment. The external field can efficiently change the electronic properties of $\alpha $ -SiO2 with oxygen vacancy and hydrogen. This study provides a novel perspective of electrical degradations on the SONOS FLASH unit in different levels from both the experiments and theoretical simulations, which can be helpful for the design of advanced computational chips in space.
总电离剂量效应对SONOS FLASH的降解行为及机理研究
本文基于180nm嵌入式FLASH工艺,设计和制作了2T SONOS FLASH,其中包括一个MOSFET和一个SONOS FLASH晶体管。采用带间隧道诱导热电子和Fowler-Nordheim对FLASH晶体管进行编程和擦除,实现不同层次的擦除,并利用中隙技术研究了辐射引起的电退化机理。为了从物理层面上阐明降解机理,从原子和电子的角度进行了第一性原理计算。电场和外界环境对电荷损失起着至关重要的作用。较高的电场会加剧氧化电荷的形成,在富氧环境下可以达到抗辐射硬度。外加电场可以有效地改变$\alpha $ -SiO2的氧空位和氢的电子性质。本研究从实验和理论模拟两方面为SONOS FLASH单元在不同程度上的电退化提供了新的视角,可为先进空间计算芯片的设计提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Device and Materials Reliability
IEEE Transactions on Device and Materials Reliability 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信