{"title":"Nanomole Process: Enabling Localized Metallic Back-Gates for Enhanced Cryogenic Front-to-Back Coupling in FDSOI Quantum Dots","authors":"Fabio Bersano;Niccolò Martinolli;Ilan Bouquet;Michele Ghini;Eloi Collette;Liza Žaper;Floris Braakman;Martino Poggio;Mathieu Luisier;Adrian Mihai Ionescu","doi":"10.1109/JEDS.2025.3545661","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel integration method of localized metallic back-gates into fully-depleted silicon-on-insulator (FDSOI) multi-gate FETs, enabling robust front-to-back electrostatic coupling from room temperature to cryogenic conditions, without the need for substrate implantation. The fabrication process, termed the Nanomole process, utilizes nanometric vapor-phase etching of the buried oxide or silicon substrate with vapor-HF and XeF2 gases. This is followed by atomic layer deposition (ALD) of a dielectric material and Pt, with precise patterning achieved through inductively coupled plasma etching. Detailed analysis of the process demonstrates controllable etch rates based on device geometry, providing calibrated guidelines for scalable manufacturing. Symmetric mid-k dual-gating is reported in devices featuring a Si-film thickness of 24 nm, with a top and bottom gate oxide equivalent thickness (EOT) of 6.5 nm. Electrical characterization of multi-gate FDSOI SETs, operated as FETs, confirms effective threshold voltage tuning through dual-gate operation, with consistent performance from room temperature to millikelvin regimes. Additionally, quantum mechanical simulations based on the effective mass approximation at 4 K offer insights into the electrostatic behavior of dual-gated SOI quantum dot devices in both planar and nanowire geometries. This scalable and versatile technological solution opens new possibilities for advanced quantum devices, such as charge and spin qubits, by enabling in situ control over volume inversion, electron valley splitting, and spin-orbit interaction.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"210-218"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902357","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902357/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel integration method of localized metallic back-gates into fully-depleted silicon-on-insulator (FDSOI) multi-gate FETs, enabling robust front-to-back electrostatic coupling from room temperature to cryogenic conditions, without the need for substrate implantation. The fabrication process, termed the Nanomole process, utilizes nanometric vapor-phase etching of the buried oxide or silicon substrate with vapor-HF and XeF2 gases. This is followed by atomic layer deposition (ALD) of a dielectric material and Pt, with precise patterning achieved through inductively coupled plasma etching. Detailed analysis of the process demonstrates controllable etch rates based on device geometry, providing calibrated guidelines for scalable manufacturing. Symmetric mid-k dual-gating is reported in devices featuring a Si-film thickness of 24 nm, with a top and bottom gate oxide equivalent thickness (EOT) of 6.5 nm. Electrical characterization of multi-gate FDSOI SETs, operated as FETs, confirms effective threshold voltage tuning through dual-gate operation, with consistent performance from room temperature to millikelvin regimes. Additionally, quantum mechanical simulations based on the effective mass approximation at 4 K offer insights into the electrostatic behavior of dual-gated SOI quantum dot devices in both planar and nanowire geometries. This scalable and versatile technological solution opens new possibilities for advanced quantum devices, such as charge and spin qubits, by enabling in situ control over volume inversion, electron valley splitting, and spin-orbit interaction.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.