Bruno Forlin;Kevin Böhmer;Carlo Cazzaniga;Paolo Rech;Gianluca Furano;Nikolaos Alachiotis;Marco Ottavi
{"title":"From Ground to Orbit: A Robust and Efficient Test Methodology for RISC-V Soft-Cores","authors":"Bruno Forlin;Kevin Böhmer;Carlo Cazzaniga;Paolo Rech;Gianluca Furano;Nikolaos Alachiotis;Marco Ottavi","doi":"10.1109/TDMR.2025.3537718","DOIUrl":null,"url":null,"abstract":"As traditional space-grade computing systems struggle to meet the increasing computational demands of modern space missions, RISC-V emerges as a promising alternative due to its open-source and highly customizable nature. However, the extensive hardware customization options in RISC-V introduce complexity in validation, making it challenging to ensure system reliability. This paper introduces a robust methodology for validating RISC-V-based systems under accelerated radiation beams, focusing on test uptime, leveraging Commercial Off-The-Shelf (COTS) FPGA devices, which offer flexibility and cost-effectiveness, to enable concurrent hardware and software development. We demonstrate how our methodology offers a comprehensive approach for testing heterogeneous systems on FPGAs, balancing thorough integration with cost-efficiency and test robustness. During our experiments with accelerated neutrons to assess the resilience of RISC-V cores, our approach guaranteed the correct delivery of 100% of the packages, while minimizing system downtime during radiation testing by reducing the Test Fixture SEFI cross-section.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 1","pages":"27-36"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10887043/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As traditional space-grade computing systems struggle to meet the increasing computational demands of modern space missions, RISC-V emerges as a promising alternative due to its open-source and highly customizable nature. However, the extensive hardware customization options in RISC-V introduce complexity in validation, making it challenging to ensure system reliability. This paper introduces a robust methodology for validating RISC-V-based systems under accelerated radiation beams, focusing on test uptime, leveraging Commercial Off-The-Shelf (COTS) FPGA devices, which offer flexibility and cost-effectiveness, to enable concurrent hardware and software development. We demonstrate how our methodology offers a comprehensive approach for testing heterogeneous systems on FPGAs, balancing thorough integration with cost-efficiency and test robustness. During our experiments with accelerated neutrons to assess the resilience of RISC-V cores, our approach guaranteed the correct delivery of 100% of the packages, while minimizing system downtime during radiation testing by reducing the Test Fixture SEFI cross-section.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.