Transformer-based multiple instance learning network with 2D positional encoding for histopathology image classification

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bin Yang, Lei Ding, Jianqiang Li, Yong Li, Guangzhi Qu, Jingyi Wang, Qiang Wang, Bo Liu
{"title":"Transformer-based multiple instance learning network with 2D positional encoding for histopathology image classification","authors":"Bin Yang, Lei Ding, Jianqiang Li, Yong Li, Guangzhi Qu, Jingyi Wang, Qiang Wang, Bo Liu","doi":"10.1007/s40747-025-01779-y","DOIUrl":null,"url":null,"abstract":"<p>Digital medical imaging, particularly pathology images, is essential for cancer diagnosis but faces challenges in direct model training due to its super-resolution nature. Although weakly supervised learning has reduced the need for manual annotations, many multiple instance learning (MIL) methods struggle to effectively capture crucial spatial relationships in histopathological images. Existing methods incorporating positional information often overlook nuanced spatial correlations or use positional encoding strategies that do not fully capture the unique spatial dynamics of pathology images. To address this issue, we propose a new framework named TMIL (Transformer-based Multiple Instance Learning Network with 2D positional encoding), which leverages multiple instance learning for weakly supervised classification of histopathological images. TMIL incorporates a 2D positional encoding module, based on the Transformer, to model positional information and explore correlations between instances. Furthermore, TMIL divides histopathological images into pseudo-bags and trains patch-level feature vectors with deep metric learning to enhance classification performance. Finally, the proposed approach is evaluated on a public colorectal adenoma dataset. The experimental results show that TMIL outperforms existing MIL methods, achieving an AUC of 97.28% and an ACC of 95.19%. These findings suggest that TMIL’s integration of deep metric learning and positional encoding offers a promising approach for improving the efficiency and accuracy of pathology image analysis in cancer diagnosis.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"56 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01779-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Digital medical imaging, particularly pathology images, is essential for cancer diagnosis but faces challenges in direct model training due to its super-resolution nature. Although weakly supervised learning has reduced the need for manual annotations, many multiple instance learning (MIL) methods struggle to effectively capture crucial spatial relationships in histopathological images. Existing methods incorporating positional information often overlook nuanced spatial correlations or use positional encoding strategies that do not fully capture the unique spatial dynamics of pathology images. To address this issue, we propose a new framework named TMIL (Transformer-based Multiple Instance Learning Network with 2D positional encoding), which leverages multiple instance learning for weakly supervised classification of histopathological images. TMIL incorporates a 2D positional encoding module, based on the Transformer, to model positional information and explore correlations between instances. Furthermore, TMIL divides histopathological images into pseudo-bags and trains patch-level feature vectors with deep metric learning to enhance classification performance. Finally, the proposed approach is evaluated on a public colorectal adenoma dataset. The experimental results show that TMIL outperforms existing MIL methods, achieving an AUC of 97.28% and an ACC of 95.19%. These findings suggest that TMIL’s integration of deep metric learning and positional encoding offers a promising approach for improving the efficiency and accuracy of pathology image analysis in cancer diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信