Strain-rate effects on the mechanical behavior of high-entropy alloys: A focused review

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muyideen Adegbite, Ahmed A. Tiamiyu
{"title":"Strain-rate effects on the mechanical behavior of high-entropy alloys: A focused review","authors":"Muyideen Adegbite,&nbsp;Ahmed A. Tiamiyu","doi":"10.1016/j.pmatsci.2025.101475","DOIUrl":null,"url":null,"abstract":"<div><div>To address one of the key challenge areas associated with high-entropy alloys (HEAs)— “Scattered Data with Uncertain Materials Pedigree”, as highlighted in the <em>TMS accelerator study in 2021: Defining Pathways for Realizing the Revolutionary Potential of High Entropy Alloys</em>, this review collates HEA mechanical data over strain-rates, <span><math><mover><mi>ε</mi><mo>̇</mo></mover></math></span>, between 10<sup>-5</sup> and 10<sup>5</sup> s<sup>-1</sup>. We focus the aggregated data on coarse-grained HEAs to isolate processing pathway and grain-size effects, identify uncharted regimes, and establish a strong strain-rate–yield strength relationship. We evaluate the deformation mechanisms in HEAs and develop a deformation mechanism map for FCC-HEA—CoCrFeMnNi. With a brief discussion on strengthening mechanisms and evaluation of aggregated data, we develop simple yield-strength prediction models for FCC <span><math><mrow><mo>[</mo><msubsup><mi>σ</mi><mrow><mi>y</mi><mo>,</mo><mi>m</mi><mi>o</mi><mi>d</mi><mi>e</mi><mi>l</mi></mrow><mrow><mi>FCC</mi><mo>-</mo><mi>H</mi><mi>E</mi><mi>A</mi></mrow></msubsup><mo>=</mo><mrow><mo>(</mo><mn>0.0245</mn><msup><mrow><mover><mi>ε</mi><mo>̇</mo></mover></mrow><mfrac><mn>1</mn><mn>4</mn></mfrac></msup><mo>+</mo><mspace></mspace><mn>0.1171</mn><mo>)</mo></mrow><mo>∗</mo><msub><mi>T</mi><mi>m</mi></msub></mrow></math></span>] and BCC [<span><math><mrow><msubsup><mi>σ</mi><mrow><mi>y</mi><mo>,</mo><mi>m</mi><mi>o</mi><mi>d</mi><mi>e</mi><mi>l</mi></mrow><mrow><mi>BCC</mi><mo>-</mo><mi>H</mi><mi>E</mi><mi>A</mi></mrow></msubsup><mo>=</mo><mrow><mo>(</mo><mn>0.0445</mn><msup><mrow><mover><mi>ε</mi><mo>̇</mo></mover></mrow><mfrac><mn>1</mn><mn>4</mn></mfrac></msup><mo>+</mo><mspace></mspace><mn>0.5075</mn><mo>)</mo></mrow><mrow><mo>∗</mo></mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></math></span>] HEAs; <span><math><msub><mi>T</mi><mi>m</mi></msub></math></span>—melting point. These models are simple with parameters that can easily be determined from HEA composition and test condition, yet they capture the essential physics related to bond strength and yield strength; moreover, the models can be coupled with other strengthening sources. Finally, the deformation kinetics of HEAs are examined: the activation-volume range in the thermal-activation regime for FCC-HEAs is 10-100<em>b<sup>3</sup></em> (about one-magnitude lower than conventional FCC metals—100-1000<em>b<sup>3</sup></em>), while BCC-HEAs are within the activation-volume range for conventional BCC metals. The activation-volume range for both FCC and BCC-HEAs is the same—0-10<em>b<sup>3</sup></em> in the viscous phonon-drag regime, which is not well documented. In general, this review shows that HEA mechanical data are aggregable to establish a strong trend observed in deformed HEAs despite their compositionally-complex nature.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"153 ","pages":"Article 101475"},"PeriodicalIF":33.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525000507","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address one of the key challenge areas associated with high-entropy alloys (HEAs)— “Scattered Data with Uncertain Materials Pedigree”, as highlighted in the TMS accelerator study in 2021: Defining Pathways for Realizing the Revolutionary Potential of High Entropy Alloys, this review collates HEA mechanical data over strain-rates, ε̇, between 10-5 and 105 s-1. We focus the aggregated data on coarse-grained HEAs to isolate processing pathway and grain-size effects, identify uncharted regimes, and establish a strong strain-rate–yield strength relationship. We evaluate the deformation mechanisms in HEAs and develop a deformation mechanism map for FCC-HEA—CoCrFeMnNi. With a brief discussion on strengthening mechanisms and evaluation of aggregated data, we develop simple yield-strength prediction models for FCC [σy,modelFCC-HEA=(0.0245ε̇14+0.1171)Tm] and BCC [σy,modelBCC-HEA=(0.0445ε̇14+0.5075)Tm] HEAs; Tm—melting point. These models are simple with parameters that can easily be determined from HEA composition and test condition, yet they capture the essential physics related to bond strength and yield strength; moreover, the models can be coupled with other strengthening sources. Finally, the deformation kinetics of HEAs are examined: the activation-volume range in the thermal-activation regime for FCC-HEAs is 10-100b3 (about one-magnitude lower than conventional FCC metals—100-1000b3), while BCC-HEAs are within the activation-volume range for conventional BCC metals. The activation-volume range for both FCC and BCC-HEAs is the same—0-10b3 in the viscous phonon-drag regime, which is not well documented. In general, this review shows that HEA mechanical data are aggregable to establish a strong trend observed in deformed HEAs despite their compositionally-complex nature.
应变速率对高熵合金力学行为的影响
为了解决与高熵合金(HEAs)相关的关键挑战领域之一——“材料谱系不确定的分散数据”,正如2021年TMS加速器研究中所强调的那样:定义实现高熵合金革命潜力的途径,本综述整理了应变率下的HEA力学数据,ε (ε)在10-5和105 s-1之间。我们将汇总数据集中在粗粒度HEAs上,以分离加工途径和粒度效应,识别未知的机制,并建立强应变率-屈服强度关系。我们评估了HEAs中的变形机制,并开发了FCC-HEA-CoCrFeMnNi的变形机制图。简要讨论了FCC [σy,modelFCC-HEA=(0.0245ε氧14+0.1171)∗Tm]和BCC [σy,modelFCC-HEA=(0.0245ε氧14+0.1171)∗Tm] HEAs的增强机制和综合数据的评价,建立了简单的屈服强度预测模型[σy,modelFCC-HEA=(0.0245ε氧14+0.5075)∗Tmσy,modelBCC-HEA=(0.0445ε氧14+0.5075)∗Tm] HEAs;TmTm-melting点。这些模型简单,参数可以很容易地从HEA组成和测试条件中确定,但它们捕获了与粘合强度和屈服强度相关的基本物理;此外,该模型可以与其他强化源耦合。最后,研究了HEAs的变形动力学:FCC-HEAs在热活化状态下的活化体积范围为10-100b3(比传统FCC金属-100 -1000b3低一个数量级),而BCC-HEAs在传统BCC金属的活化体积范围内。FCC和BCC-HEAs的活化体积范围相同,在粘性声子-阻力状态下为0-10b3,这一点没有很好的文献记载。总的来说,这篇综述表明,尽管变形HEA的成分复杂,但HEA的力学数据是可聚合的,从而建立了在变形HEA中观察到的强烈趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信