SLPOD: superclass learning on point cloud object detection

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaokang Yang, Kai Zhang, Yangyue Feng, Beibei Su, Yiming Cai, Kaibo Zhang, Zhiheng Zhang
{"title":"SLPOD: superclass learning on point cloud object detection","authors":"Xiaokang Yang, Kai Zhang, Yangyue Feng, Beibei Su, Yiming Cai, Kaibo Zhang, Zhiheng Zhang","doi":"10.1007/s40747-025-01781-4","DOIUrl":null,"url":null,"abstract":"<p>In the realm of point cloud object detection, classification tasks emphasize extracting common features to enhance generalization, often at the expense of individual-specific features. This limitation becomes particularly evident when handling intricate datasets like KITTI. Traditional models struggle to adequately capture individual-specific features, resulting in a scattered distribution of samples within the feature space and compromising the precision of object bounding boxes. To tackle this challenge, we introduce SLPOD, a Superclass-based point cloud object detection algorithm. Employing a siamese network structure, SLPOD conducts unsupervised clustering of samples within the same category to enhance the extraction of individual-specific features, thereby improving detection accuracy when confronted with complex datasets. Additionally, our approach integrates strategies such as voxel and point cloud feature fusion, global feature acquisition, and dynamic adjustment of sampling rates based on point sparsity, further enhancing the network’s capability to extract features. Experimental results demonstrate that SLPOD outperforms baseline algorithms in mean Average Precision on both KITTI and Waymo datasets, exhibiting robustness across diverse scenarios.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01781-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of point cloud object detection, classification tasks emphasize extracting common features to enhance generalization, often at the expense of individual-specific features. This limitation becomes particularly evident when handling intricate datasets like KITTI. Traditional models struggle to adequately capture individual-specific features, resulting in a scattered distribution of samples within the feature space and compromising the precision of object bounding boxes. To tackle this challenge, we introduce SLPOD, a Superclass-based point cloud object detection algorithm. Employing a siamese network structure, SLPOD conducts unsupervised clustering of samples within the same category to enhance the extraction of individual-specific features, thereby improving detection accuracy when confronted with complex datasets. Additionally, our approach integrates strategies such as voxel and point cloud feature fusion, global feature acquisition, and dynamic adjustment of sampling rates based on point sparsity, further enhancing the network’s capability to extract features. Experimental results demonstrate that SLPOD outperforms baseline algorithms in mean Average Precision on both KITTI and Waymo datasets, exhibiting robustness across diverse scenarios.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信