Xiaokang Yang, Kai Zhang, Yangyue Feng, Beibei Su, Yiming Cai, Kaibo Zhang, Zhiheng Zhang
{"title":"SLPOD: superclass learning on point cloud object detection","authors":"Xiaokang Yang, Kai Zhang, Yangyue Feng, Beibei Su, Yiming Cai, Kaibo Zhang, Zhiheng Zhang","doi":"10.1007/s40747-025-01781-4","DOIUrl":null,"url":null,"abstract":"<p>In the realm of point cloud object detection, classification tasks emphasize extracting common features to enhance generalization, often at the expense of individual-specific features. This limitation becomes particularly evident when handling intricate datasets like KITTI. Traditional models struggle to adequately capture individual-specific features, resulting in a scattered distribution of samples within the feature space and compromising the precision of object bounding boxes. To tackle this challenge, we introduce SLPOD, a Superclass-based point cloud object detection algorithm. Employing a siamese network structure, SLPOD conducts unsupervised clustering of samples within the same category to enhance the extraction of individual-specific features, thereby improving detection accuracy when confronted with complex datasets. Additionally, our approach integrates strategies such as voxel and point cloud feature fusion, global feature acquisition, and dynamic adjustment of sampling rates based on point sparsity, further enhancing the network’s capability to extract features. Experimental results demonstrate that SLPOD outperforms baseline algorithms in mean Average Precision on both KITTI and Waymo datasets, exhibiting robustness across diverse scenarios.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01781-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of point cloud object detection, classification tasks emphasize extracting common features to enhance generalization, often at the expense of individual-specific features. This limitation becomes particularly evident when handling intricate datasets like KITTI. Traditional models struggle to adequately capture individual-specific features, resulting in a scattered distribution of samples within the feature space and compromising the precision of object bounding boxes. To tackle this challenge, we introduce SLPOD, a Superclass-based point cloud object detection algorithm. Employing a siamese network structure, SLPOD conducts unsupervised clustering of samples within the same category to enhance the extraction of individual-specific features, thereby improving detection accuracy when confronted with complex datasets. Additionally, our approach integrates strategies such as voxel and point cloud feature fusion, global feature acquisition, and dynamic adjustment of sampling rates based on point sparsity, further enhancing the network’s capability to extract features. Experimental results demonstrate that SLPOD outperforms baseline algorithms in mean Average Precision on both KITTI and Waymo datasets, exhibiting robustness across diverse scenarios.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.