Benjamin Phipps , Xavier Hadoux , Bin Sheng , J. Peter Campbell , T.Y. Alvin Liu , Pearse A. Keane , Carol Y. Cheung , Tham Yih Chung , Tien Y. Wong , Peter van Wijngaarden
{"title":"AI image generation technology in ophthalmology: Use, misuse and future applications","authors":"Benjamin Phipps , Xavier Hadoux , Bin Sheng , J. Peter Campbell , T.Y. Alvin Liu , Pearse A. Keane , Carol Y. Cheung , Tham Yih Chung , Tien Y. Wong , Peter van Wijngaarden","doi":"10.1016/j.preteyeres.2025.101353","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>AI-powered image generation technology holds the potential to reshape medical practice, yet it remains an unfamiliar technology for both medical researchers and clinicians alike. Given the adoption of this technology relies on clinician understanding and acceptance, we sought to demystify its use in ophthalmology. To this end, we present a literature review on image generation technology in ophthalmology, examining both its theoretical applications and future role in clinical practice.</div></div><div><h3>Methods</h3><div>First, we consider the key model designs used for image synthesis, including generative adversarial networks, autoencoders, and diffusion models. We then perform a survey of the literature for image generation technology in ophthalmology prior to September 2024, presenting both the type of model used and its clinical application. Finally, we discuss the limitations of this technology, the risks of its misuse and the future directions of research in this field.</div></div><div><h3>Results</h3><div>Applications of this technology include improving AI diagnostic models, inter-modality image transformation, more accurate treatment and disease prognostication, image denoising, and individualised education. Key barriers to its adoption include bias in generative models, risks to patient data security, computational and logistical barriers to development, challenges with model explainability, inconsistent use of validation metrics between studies and misuse of synthetic images. Looking forward, researchers are placing a further emphasis on clinically grounded metrics, the development of image generation foundation models and the implementation of methods to ensure data provenance.</div></div><div><h3>Conclusion</h3><div>Compared to other medical applications of AI, image generation is still in its infancy. Yet, it holds the potential to revolutionise ophthalmology across research, education and clinical practice. This review aims to guide ophthalmic researchers wanting to leverage this technology, while also providing an insight for clinicians on how it may change ophthalmic practice in the future.</div></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"106 ","pages":"Article 101353"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946225000266","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
AI-powered image generation technology holds the potential to reshape medical practice, yet it remains an unfamiliar technology for both medical researchers and clinicians alike. Given the adoption of this technology relies on clinician understanding and acceptance, we sought to demystify its use in ophthalmology. To this end, we present a literature review on image generation technology in ophthalmology, examining both its theoretical applications and future role in clinical practice.
Methods
First, we consider the key model designs used for image synthesis, including generative adversarial networks, autoencoders, and diffusion models. We then perform a survey of the literature for image generation technology in ophthalmology prior to September 2024, presenting both the type of model used and its clinical application. Finally, we discuss the limitations of this technology, the risks of its misuse and the future directions of research in this field.
Results
Applications of this technology include improving AI diagnostic models, inter-modality image transformation, more accurate treatment and disease prognostication, image denoising, and individualised education. Key barriers to its adoption include bias in generative models, risks to patient data security, computational and logistical barriers to development, challenges with model explainability, inconsistent use of validation metrics between studies and misuse of synthetic images. Looking forward, researchers are placing a further emphasis on clinically grounded metrics, the development of image generation foundation models and the implementation of methods to ensure data provenance.
Conclusion
Compared to other medical applications of AI, image generation is still in its infancy. Yet, it holds the potential to revolutionise ophthalmology across research, education and clinical practice. This review aims to guide ophthalmic researchers wanting to leverage this technology, while also providing an insight for clinicians on how it may change ophthalmic practice in the future.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.