Targeting the PI3K Pathway: Advancements and Achievements in Breast Cancer Therapy.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Basavana Gowda Hosur Dinesh, Sunil Kumar Bandral, Nandini Markuli Sadashivappa, Srinivas Ganjipete, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Panneerselvam Theivendren, Judy Jays, Parasuraman Pavadai
{"title":"Targeting the PI3K Pathway: Advancements and Achievements in Breast Cancer Therapy.","authors":"Basavana Gowda Hosur Dinesh, Sunil Kumar Bandral, Nandini Markuli Sadashivappa, Srinivas Ganjipete, Damodar Nayak Ammunje, Selvaraj Kunjiappan, Panneerselvam Theivendren, Judy Jays, Parasuraman Pavadai","doi":"10.2174/0113816128357976250122042633","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a complex disease caused by the aberrant and unchecked proliferation of breast cells, which leads to the development of tumours. In various types of cancer, the Phosphoinositide 3- kinase/Protein kinase B (PKB, also known as Akt (PI3K/Akt) signalling pathway, is essential for controlling cell survival, metastasis, and metabolism. Currently, marketed PI3K inhibitors for treating breast cancer face several issues, including toxicity, resistance, etc. Significant efforts have been made to develop synthetic and repurposed inhibitor drugs to target PI3K, which are now being tested in clinical trials. Developed synthetic PI3K inhibitors have been reported to have better results in clinical trials in the suppression of tumors. This review article mainly focuses on the PI3K pathway at the cellular and molecular level, the development of PI3K inhibitors, and their clinical trials. Biomarkers, marine drugs, synthetic drugs, and repurposed drugs to treat breast cancer are also discussed, followed by mutational changes in PI3K and the resistance mechanism involved in PI3K inhibitors.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128357976250122042633","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer is a complex disease caused by the aberrant and unchecked proliferation of breast cells, which leads to the development of tumours. In various types of cancer, the Phosphoinositide 3- kinase/Protein kinase B (PKB, also known as Akt (PI3K/Akt) signalling pathway, is essential for controlling cell survival, metastasis, and metabolism. Currently, marketed PI3K inhibitors for treating breast cancer face several issues, including toxicity, resistance, etc. Significant efforts have been made to develop synthetic and repurposed inhibitor drugs to target PI3K, which are now being tested in clinical trials. Developed synthetic PI3K inhibitors have been reported to have better results in clinical trials in the suppression of tumors. This review article mainly focuses on the PI3K pathway at the cellular and molecular level, the development of PI3K inhibitors, and their clinical trials. Biomarkers, marine drugs, synthetic drugs, and repurposed drugs to treat breast cancer are also discussed, followed by mutational changes in PI3K and the resistance mechanism involved in PI3K inhibitors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信