Xuanxuan Ban;Jing Liang;Kunjie Yu;Kangjia Qiao;Ponnuthurai Nagaratnam Suganthan;Yaonan Wang
{"title":"A Subspace Search-Based Evolutionary Algorithm for Large-Scale Constrained Multiobjective Optimization and Application","authors":"Xuanxuan Ban;Jing Liang;Kunjie Yu;Kangjia Qiao;Ponnuthurai Nagaratnam Suganthan;Yaonan Wang","doi":"10.1109/TCYB.2025.3548414","DOIUrl":null,"url":null,"abstract":"Large-scale constrained multiobjective optimization problems (LSCMOPs) exist widely in science and technology. LSCMOPs pose great challenges to algorithms due to the need to optimize multiple conflicting objectives and satisfy multiple constraints in a large search space. To better address such problems, this article proposes a dynamic subspace search-based evolutionary algorithm for solving LSCMOPs. The main idea is to initially allow the population to search in a low-dimensional subspace to increase convergence, then the searched subspace is gradually expanded to encourage the population to further search the full decision space. Specifically, the contribution of each decision variable to the evolution is first calculated using the proposed decision variable analysis method. Then, a probability-based offspring generation strategy is developed to encourage the population to preferentially search in a low-dimensional subspace composed of decision variables with high contribution degrees, thus speeding up the early convergence. With the continuous progress of evolution, the subspace is gradually expanded to ensure that the population can better explore the entire space. The performance of the proposed algorithm is evaluated on a variety of test problems with 100–1000 decision variables. Experimental results on four test suits and three real-world instances show that the proposed algorithm is efficient in solving LSCMOPs.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 5","pages":"2486-2499"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10934713/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale constrained multiobjective optimization problems (LSCMOPs) exist widely in science and technology. LSCMOPs pose great challenges to algorithms due to the need to optimize multiple conflicting objectives and satisfy multiple constraints in a large search space. To better address such problems, this article proposes a dynamic subspace search-based evolutionary algorithm for solving LSCMOPs. The main idea is to initially allow the population to search in a low-dimensional subspace to increase convergence, then the searched subspace is gradually expanded to encourage the population to further search the full decision space. Specifically, the contribution of each decision variable to the evolution is first calculated using the proposed decision variable analysis method. Then, a probability-based offspring generation strategy is developed to encourage the population to preferentially search in a low-dimensional subspace composed of decision variables with high contribution degrees, thus speeding up the early convergence. With the continuous progress of evolution, the subspace is gradually expanded to ensure that the population can better explore the entire space. The performance of the proposed algorithm is evaluated on a variety of test problems with 100–1000 decision variables. Experimental results on four test suits and three real-world instances show that the proposed algorithm is efficient in solving LSCMOPs.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.