{"title":"A State Space Model for Multiobject Full 3-D Information Estimation From RGB-D Images","authors":"Jiaming Zhou;Qing Zhu;Yaonan Wang;Mingtao Feng;Jian Liu;Jianan Huang;Ajmal Mian","doi":"10.1109/TCYB.2025.3548788","DOIUrl":null,"url":null,"abstract":"Visual understanding of 3-D objects is essential for robotic manipulation, autonomous navigation, and augmented reality. However, existing methods struggle to perform this task efficiently and accurately in an end-to-end manner. We propose a single-shot method based on the state space model (SSM) to predict the full 3-D information (pose, size, shape) of multiple 3-D objects from a single RGB-D image in an end-to-end manner. Our method first encodes long-range semantic information from RGB and depth images separately and then combines them into an integrated latent representation that is processed by a modified SSM to infer the full 3-D information in two separate task heads within a unified model. A heatmap/detection head predicts object centers, and a 3-D information head predicts a matrix detailing the pose, size and latent code of shape for each detected object. We also propose a shape autoencoder based on the SSM, which learns canonical shape codes derived from a large database of 3-D point cloud shapes. The end-to-end framework, modified SSM block and SSM-based shape autoencoder form major contributions of this work. Our design includes different scan strategies tailored to different input data representations, such as RGB-D images and point clouds. Extensive evaluations on the REAL275, CAMERA25, and Wild6D datasets show that our method achieves state-of-the-art performance. On the large-scale Wild6D dataset, our model significantly outperforms the nearest competitor, achieving 2.6% and 5.1% improvements on the IOU-50 and 5°10 cm metrics, respectively.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 5","pages":"2248-2260"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10934139/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Visual understanding of 3-D objects is essential for robotic manipulation, autonomous navigation, and augmented reality. However, existing methods struggle to perform this task efficiently and accurately in an end-to-end manner. We propose a single-shot method based on the state space model (SSM) to predict the full 3-D information (pose, size, shape) of multiple 3-D objects from a single RGB-D image in an end-to-end manner. Our method first encodes long-range semantic information from RGB and depth images separately and then combines them into an integrated latent representation that is processed by a modified SSM to infer the full 3-D information in two separate task heads within a unified model. A heatmap/detection head predicts object centers, and a 3-D information head predicts a matrix detailing the pose, size and latent code of shape for each detected object. We also propose a shape autoencoder based on the SSM, which learns canonical shape codes derived from a large database of 3-D point cloud shapes. The end-to-end framework, modified SSM block and SSM-based shape autoencoder form major contributions of this work. Our design includes different scan strategies tailored to different input data representations, such as RGB-D images and point clouds. Extensive evaluations on the REAL275, CAMERA25, and Wild6D datasets show that our method achieves state-of-the-art performance. On the large-scale Wild6D dataset, our model significantly outperforms the nearest competitor, achieving 2.6% and 5.1% improvements on the IOU-50 and 5°10 cm metrics, respectively.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.