Protocatechuic Acid Reduces Liver Fatty Acid Uptake in HFD-Fed Mice Associated With the Inhibition of DHHC5-Mediated CD36 Palmitoylation

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Jia Li, Peiran Li, Xue Wu, Zibin Li, Yunlong Li, Chao Liu, Ji Bian, Lin Han, Min Wang
{"title":"Protocatechuic Acid Reduces Liver Fatty Acid Uptake in HFD-Fed Mice Associated With the Inhibition of DHHC5-Mediated CD36 Palmitoylation","authors":"Jia Li, Peiran Li, Xue Wu, Zibin Li, Yunlong Li, Chao Liu, Ji Bian, Lin Han, Min Wang","doi":"10.1002/mnfr.70012","DOIUrl":null,"url":null,"abstract":"Metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent and has emerged as a pressing issue for human health. A highly palmitoylated cluster of differentiation 36 (CD36) promotes free fatty acid (FFA) uptake, which contributes to the development of MASLD. Protocatechuic acid (PCA), the main metabolite of anthocyanins, was reported to inhibit MASLD by regulating the expression of CD36. However, the impact of PCA on CD36 palmitoylation has not been extensively studied. In the present study, we found that PCA could significantly reduce lipid uptake and accumulation in hepatocytes by decreasing CD36 palmitoylation. Inhibitors were used to prove that PCA suppressed CD36 palmitoylation by lowering zinc finger DHHC-type palmitoyltransferase 5 (DHHC5) palmitoylation, but not in an acyl protein thioesterase 1 (APT1)-dependent manner. Further experiments showed that PCA-mediated inhibition of DHHC5 palmitoylation and acyltransferase activity was closely related to the reduction of the CD36/Fyn/Lyn complex. PCA diminished the palmitoylation of CD36 and DHHC5 and ultimately lessened lipid uptake and accumulation in hepatocytes.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"124 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70012","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent and has emerged as a pressing issue for human health. A highly palmitoylated cluster of differentiation 36 (CD36) promotes free fatty acid (FFA) uptake, which contributes to the development of MASLD. Protocatechuic acid (PCA), the main metabolite of anthocyanins, was reported to inhibit MASLD by regulating the expression of CD36. However, the impact of PCA on CD36 palmitoylation has not been extensively studied. In the present study, we found that PCA could significantly reduce lipid uptake and accumulation in hepatocytes by decreasing CD36 palmitoylation. Inhibitors were used to prove that PCA suppressed CD36 palmitoylation by lowering zinc finger DHHC-type palmitoyltransferase 5 (DHHC5) palmitoylation, but not in an acyl protein thioesterase 1 (APT1)-dependent manner. Further experiments showed that PCA-mediated inhibition of DHHC5 palmitoylation and acyltransferase activity was closely related to the reduction of the CD36/Fyn/Lyn complex. PCA diminished the palmitoylation of CD36 and DHHC5 and ultimately lessened lipid uptake and accumulation in hepatocytes.

Abstract Image

原儿茶酸通过抑制dhhc5介导的CD36棕榈酰化来减少hfd喂养小鼠肝脏脂肪酸摄取
代谢功能障碍相关的脂肪变性肝病(MASLD)非常普遍,已成为人类健康的紧迫问题。一个高度棕榈酰化的分化簇36 (CD36)促进了游离脂肪酸(FFA)的摄取,这有助于MASLD的发展。原儿茶酸(PCA)是花青素的主要代谢物,据报道通过调节CD36的表达来抑制MASLD。然而,PCA对CD36棕榈酰化的影响尚未得到广泛研究。在本研究中,我们发现PCA可以通过降低CD36棕榈酰化而显著减少肝细胞的脂质摄取和积累。使用抑制剂来证明PCA通过降低锌指dhhc型棕榈酰转移酶5 (DHHC5)棕榈酰化来抑制CD36棕榈酰化,但不以酰基蛋白硫酯酶1 (APT1)依赖的方式。进一步的实验表明,pca介导的DHHC5棕榈酰化和酰基转移酶活性的抑制与CD36/Fyn/Lyn复合物的减少密切相关。PCA降低了CD36和DHHC5的棕榈酰化,最终减少了肝细胞的脂质摄取和积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信