Ensuring anatomical integrity and shared contact surfaces in vertebra and disc models: a segmentation-based smoothing approach.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kati Nispel, Ann-Marie Scherzberger, Tanja Lerchl, Gabriel Gruber, Hendrik Moeller, Robert Graf, Veit Senner, Jan S Kirschke
{"title":"Ensuring anatomical integrity and shared contact surfaces in vertebra and disc models: a segmentation-based smoothing approach.","authors":"Kati Nispel, Ann-Marie Scherzberger, Tanja Lerchl, Gabriel Gruber, Hendrik Moeller, Robert Graf, Veit Senner, Jan S Kirschke","doi":"10.1080/10255842.2025.2473523","DOIUrl":null,"url":null,"abstract":"<p><p>Due to limited MRI resolution, patient-specific simulation models derived from medical images often lack bio-fidelity. To address this, we present a smoothing pipeline for generating high-fidelity meshes of vertebrae and intervertebral discs from medical images, which serve as a base for biomechanical simulations. Using a diverse array of vertebrae smoothing algorithms, including e.g. Laplace and Taubin, we systematically explored 136 combinations across six protocols. Subsequently, an adaptive smoothing algorithm was developed for intervertebral disc meshes. By adjusting vertex locations to those of the vertebra mesh, we ensured seamless alignment of contact surfaces, including shared nodes. Evaluation of our pipeline against conventional smoothing methods demonstrates superior edge preservation and reduced stair-step effects, enhancing the fidelity of the generated meshes. Finite Element Method simulations further confirmed the accuracy of our selective smoothing pipeline, showing increased notch stress. Validated on a diverse dataset, our smoothing pipeline generates patient-specific models with enhanced biomechanical fidelity, enabling large-scale studies and biomechanical insights into spine pathologies.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-11"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2473523","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to limited MRI resolution, patient-specific simulation models derived from medical images often lack bio-fidelity. To address this, we present a smoothing pipeline for generating high-fidelity meshes of vertebrae and intervertebral discs from medical images, which serve as a base for biomechanical simulations. Using a diverse array of vertebrae smoothing algorithms, including e.g. Laplace and Taubin, we systematically explored 136 combinations across six protocols. Subsequently, an adaptive smoothing algorithm was developed for intervertebral disc meshes. By adjusting vertex locations to those of the vertebra mesh, we ensured seamless alignment of contact surfaces, including shared nodes. Evaluation of our pipeline against conventional smoothing methods demonstrates superior edge preservation and reduced stair-step effects, enhancing the fidelity of the generated meshes. Finite Element Method simulations further confirmed the accuracy of our selective smoothing pipeline, showing increased notch stress. Validated on a diverse dataset, our smoothing pipeline generates patient-specific models with enhanced biomechanical fidelity, enabling large-scale studies and biomechanical insights into spine pathologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信