Oxygen Doping in Ferroelectric Wurtzite-type Al0.73Sc0.27N: Improved Leakage and Polarity Control

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Md Redwanul Islam, Niklas Wolff, Georg Schönweger, Tom-Niklas Kreutzer, Margaret Brown, Maike Gremmel, Eric S. Ollanescu-Orendi, Patrik Straňák, Lutz Kirste, Geoff L. Brennecka, Simon Fichtner, Lorenz Kienle
{"title":"Oxygen Doping in Ferroelectric Wurtzite-type Al0.73Sc0.27N: Improved Leakage and Polarity Control","authors":"Md Redwanul Islam, Niklas Wolff, Georg Schönweger, Tom-Niklas Kreutzer, Margaret Brown, Maike Gremmel, Eric S. Ollanescu-Orendi, Patrik Straňák, Lutz Kirste, Geoff L. Brennecka, Simon Fichtner, Lorenz Kienle","doi":"10.1002/aelm.202400874","DOIUrl":null,"url":null,"abstract":"This study examines systematic oxygen (<b>O</b>)-incorporation to reduce total leakage currents in sputtered wurtzite-type ferroelectric Al<sub>0.73</sub>Sc<sub>0.27</sub>N thin films, along with its impact on the material structure and the polarity of the as-grown films. The <b>O</b> in the bulk Al<sub>0.73</sub>Sc<sub>0.27</sub>N was introduced through an external gas source during the reactive sputter process. In comparison to samples without doping, <b>O</b>-doped films showed almost a fourfold reduction of the overall leakage current near the coercive field. In addition, doping resulted in the reduction of the steady-state leakage currents by roughly one order of magnitude at sub-coercive fields. The microstructure analysis through X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) indicated no notable structural degradation in the bulk Al<sub>0.73</sub>Sc<sub>0.27</sub>N. The maximum O-doped film exhibited a c-axis out-of-plane texture increase of only 20%, rising from 1.8°, while chemical mapping indicated a consistent distribution of <b>O</b> throughout the bulk. Our results further demonstrate the ability to control the as-deposited polarity of Al<sub>0.73</sub>Sc<sub>0.27</sub>N via the <b>O</b>-concentration, changing from nitrogen (N)- to metal (M)-polar orientation. Thus, this article presents a promising approach to mitigate the leakage current in wurtzite-type Al<sub>0.73</sub>Sc<sub>0.27</sub>N without incurring any significant structural degradation of the bulk thin film, thereby making ferroelectric nitrides more suitable for microelectronic applications.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"22 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400874","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines systematic oxygen (O)-incorporation to reduce total leakage currents in sputtered wurtzite-type ferroelectric Al0.73Sc0.27N thin films, along with its impact on the material structure and the polarity of the as-grown films. The O in the bulk Al0.73Sc0.27N was introduced through an external gas source during the reactive sputter process. In comparison to samples without doping, O-doped films showed almost a fourfold reduction of the overall leakage current near the coercive field. In addition, doping resulted in the reduction of the steady-state leakage currents by roughly one order of magnitude at sub-coercive fields. The microstructure analysis through X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) indicated no notable structural degradation in the bulk Al0.73Sc0.27N. The maximum O-doped film exhibited a c-axis out-of-plane texture increase of only 20%, rising from 1.8°, while chemical mapping indicated a consistent distribution of O throughout the bulk. Our results further demonstrate the ability to control the as-deposited polarity of Al0.73Sc0.27N via the O-concentration, changing from nitrogen (N)- to metal (M)-polar orientation. Thus, this article presents a promising approach to mitigate the leakage current in wurtzite-type Al0.73Sc0.27N without incurring any significant structural degradation of the bulk thin film, thereby making ferroelectric nitrides more suitable for microelectronic applications.

Abstract Image

氧掺杂铁电纤锌矿型Al0.73Sc0.27N:改善漏损和极性控制
本研究考察了系统氧(O)掺入以减少溅射纤锌矿型铁电Al0.73Sc0.27N薄膜的总泄漏电流,以及它对生长薄膜的材料结构和极性的影响。Al0.73Sc0.27N块体中的O是在反应溅射过程中通过外部气源引入的。与未掺杂的样品相比,o掺杂薄膜在矫顽力场附近的总泄漏电流几乎减少了四倍。此外,在亚矫顽力场下,掺杂导致稳态泄漏电流降低了大约一个数量级。通过x射线衍射(XRD)和扫描透射电子显微镜(STEM)的微观结构分析表明,Al0.73Sc0.27N块体没有明显的结构降解。最大O掺杂膜的c轴面外织构仅增加20%,从1.8°上升,而化学映射表明O在整个体中分布一致。我们的研究结果进一步证明了通过o浓度控制Al0.73Sc0.27N沉积极性的能力,从氮(N)-极性转变为金属(M)-极性。因此,本文提出了一种很有前途的方法,可以减轻纤锌矿型Al0.73Sc0.27N中的泄漏电流,而不会导致大块薄膜的任何显著结构退化,从而使铁电氮化物更适合微电子应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信