Enhanced Percolation Effect in Sub-100 Nm Nanograting Structure for High-Performance Bending Insensitive Flexible Pressure Sensor

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jae-Soon Yang, Min-Ho Seo, Min-Seung Jo, Kwang-Wook Choi, Jae-Shin Lee, Myung-Kun Chung, Bon-Jae Koo, Jae-Young Yoo, Jun-Bo Yoon
{"title":"Enhanced Percolation Effect in Sub-100 Nm Nanograting Structure for High-Performance Bending Insensitive Flexible Pressure Sensor","authors":"Jae-Soon Yang, Min-Ho Seo, Min-Seung Jo, Kwang-Wook Choi, Jae-Shin Lee, Myung-Kun Chung, Bon-Jae Koo, Jae-Young Yoo, Jun-Bo Yoon","doi":"10.1002/aelm.202400980","DOIUrl":null,"url":null,"abstract":"Flexible pressure sensors have emerged as indispensable components in advancing wearable electronics, healthcare systems, and next-generation human-machine interfaces. To enable these applications, significant progress has been made in improving the sensitivity of flexible pressure sensors. However, achieving bending insensitivity—crucial for reliable pressure detection under dynamic and curved conditions—remains a critical challenge. In this study, a high-performance flexible capacitive pressure sensor is presented that successfully integrates bending insensitivity with enhanced pressure sensitivity. By leveraging the percolation effect within a sub-100 nm nanograting structure, the design of the pressure sensor is optimized through numerical analysis and finite element method (FEM) simulations. Fabricated using a nanoscale wet-chemical digital etching process and nanoimprint lithography, the sensor features a sub-100 nm valley nanograting structure. It exhibits an exceptional sensitivity of 0.05 kPa⁻¹, achieving capacitance changes 4.2 times greater than those of flat substrate designs. Furthermore, the sub-100 nm nanostructured pressure sensor effectively reduces bending strain to 0.175 times that of flat substrates, ensuring stable performance even at a 2.5 mm radius of curvature. This highly reliable flexible pressure sensor array enables real-time pressure mapping and human artery pulse monitoring, making it highly suitable for tactile and wearable sensing applications.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"91 4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400980","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible pressure sensors have emerged as indispensable components in advancing wearable electronics, healthcare systems, and next-generation human-machine interfaces. To enable these applications, significant progress has been made in improving the sensitivity of flexible pressure sensors. However, achieving bending insensitivity—crucial for reliable pressure detection under dynamic and curved conditions—remains a critical challenge. In this study, a high-performance flexible capacitive pressure sensor is presented that successfully integrates bending insensitivity with enhanced pressure sensitivity. By leveraging the percolation effect within a sub-100 nm nanograting structure, the design of the pressure sensor is optimized through numerical analysis and finite element method (FEM) simulations. Fabricated using a nanoscale wet-chemical digital etching process and nanoimprint lithography, the sensor features a sub-100 nm valley nanograting structure. It exhibits an exceptional sensitivity of 0.05 kPa⁻¹, achieving capacitance changes 4.2 times greater than those of flat substrate designs. Furthermore, the sub-100 nm nanostructured pressure sensor effectively reduces bending strain to 0.175 times that of flat substrates, ensuring stable performance even at a 2.5 mm radius of curvature. This highly reliable flexible pressure sensor array enables real-time pressure mapping and human artery pulse monitoring, making it highly suitable for tactile and wearable sensing applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信