Metabolome reveal high nitrogen supply decrease the antioxidant capacity of blue honeysuckle (Lonicera caerulea L.) by regulating flavonoids

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Liangchuan Guo, Jinli Qiao, Lijun Zhang, Ke Ma, Hao Yang, Jieru Zhao, Dong Qin, Junwei Huo
{"title":"Metabolome reveal high nitrogen supply decrease the antioxidant capacity of blue honeysuckle (Lonicera caerulea L.) by regulating flavonoids","authors":"Liangchuan Guo, Jinli Qiao, Lijun Zhang, Ke Ma, Hao Yang, Jieru Zhao, Dong Qin, Junwei Huo","doi":"10.1016/j.foodchem.2025.143954","DOIUrl":null,"url":null,"abstract":"The objectives of this research were to analyze the effects of varying nitrogen application rates on fruit quality and antioxidant properties of blue honeysuckle through widely targeted metabolomics analysis. High nitrogen application resulted in a reduction in fruit size and soluble solid content, along with significant decreases in the levels of total anthocyanins, phenolic compounds, flavonoids, and antioxidant indices. Under low nitrogen, key flavonoids in fruit namely Kaempferol-7-O-glucoside, Morin 3-alpha-L-lyxopyranoside, and Quercetin-3-O-xyloside (Reynoutrin) showed the high peak areas, with SOD, POD, and CAT activities at 1742.19, 45,525.65, and 1065.13 U/g, but decreased under high nitrogen. The molecular docking analysis revealed affinity values of −5.39, −2.72, −4.37, −3.98, −4.04, −4.18, −2.51, −2.31, and − 4.08 kcal/mol for SOD, POD, and CAT. These three flavonoids play a crucial role in the antioxidant defense system by targeting different enzymes, and their reduced concentrations under high nitrogen conditions may impair the fruit's antioxidant capacity.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"61 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143954","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The objectives of this research were to analyze the effects of varying nitrogen application rates on fruit quality and antioxidant properties of blue honeysuckle through widely targeted metabolomics analysis. High nitrogen application resulted in a reduction in fruit size and soluble solid content, along with significant decreases in the levels of total anthocyanins, phenolic compounds, flavonoids, and antioxidant indices. Under low nitrogen, key flavonoids in fruit namely Kaempferol-7-O-glucoside, Morin 3-alpha-L-lyxopyranoside, and Quercetin-3-O-xyloside (Reynoutrin) showed the high peak areas, with SOD, POD, and CAT activities at 1742.19, 45,525.65, and 1065.13 U/g, but decreased under high nitrogen. The molecular docking analysis revealed affinity values of −5.39, −2.72, −4.37, −3.98, −4.04, −4.18, −2.51, −2.31, and − 4.08 kcal/mol for SOD, POD, and CAT. These three flavonoids play a crucial role in the antioxidant defense system by targeting different enzymes, and their reduced concentrations under high nitrogen conditions may impair the fruit's antioxidant capacity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信