Plate materials for cardiopulmonary protection: a computational modeling study.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Maayan Lustig, Yoram Epstein, Amit Gefen
{"title":"Plate materials for cardiopulmonary protection: a computational modeling study.","authors":"Maayan Lustig, Yoram Epstein, Amit Gefen","doi":"10.1080/10255842.2025.2476192","DOIUrl":null,"url":null,"abstract":"<p><p>Personal body armor, such as ballistic protective plates (BPPs), plays a vital role in protecting the torso against high-energy impacts, yet Behind Armor Blunt Trauma (BABT) remains a concern. BABT can inflict damage on critical organs, particularly the heart and lungs. This study investigates the protective performance of BPP materials and padding configurations. We employed a finite element (FE) model of the torso, incorporating detailed anatomical features, to simulate non-penetrating impacts on the heart and lungs. Three BPP materials - Kevlar-29, Ultra-High-Molecular-Weight Polyethylene (UHMWPE), and Alumina, were analyzed with and without 6 mm and 12 mm padding layers against a 5.56 mm bullet impact at 500 m/s. The results demonstrated that Alumina plates provided superior protection, resulting in 186% lower peak strain and 229% lower peak stress in the heart compared to Kevlar and UHMWPE. The addition of padding further reduced strains and stresses, with 12 mm padding yielding average reductions of 44% in peak strain and 36% in peak stress in the heart. Similarly, in the lungs, 12 mm padding led to reductions of 38% in peak strain and 34% in peak stress. The model was validated against experimental force measurements using a life-sized torso phantom, demonstrating strong agreement with piezoelectric sensor measurements (less than 4% difference). These findings underscore the importance of selecting appropriate BPP materials and padding thickness to minimize biomechanical impacts on vital organs.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-23"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2476192","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Personal body armor, such as ballistic protective plates (BPPs), plays a vital role in protecting the torso against high-energy impacts, yet Behind Armor Blunt Trauma (BABT) remains a concern. BABT can inflict damage on critical organs, particularly the heart and lungs. This study investigates the protective performance of BPP materials and padding configurations. We employed a finite element (FE) model of the torso, incorporating detailed anatomical features, to simulate non-penetrating impacts on the heart and lungs. Three BPP materials - Kevlar-29, Ultra-High-Molecular-Weight Polyethylene (UHMWPE), and Alumina, were analyzed with and without 6 mm and 12 mm padding layers against a 5.56 mm bullet impact at 500 m/s. The results demonstrated that Alumina plates provided superior protection, resulting in 186% lower peak strain and 229% lower peak stress in the heart compared to Kevlar and UHMWPE. The addition of padding further reduced strains and stresses, with 12 mm padding yielding average reductions of 44% in peak strain and 36% in peak stress in the heart. Similarly, in the lungs, 12 mm padding led to reductions of 38% in peak strain and 34% in peak stress. The model was validated against experimental force measurements using a life-sized torso phantom, demonstrating strong agreement with piezoelectric sensor measurements (less than 4% difference). These findings underscore the importance of selecting appropriate BPP materials and padding thickness to minimize biomechanical impacts on vital organs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信