Eberechi Wogu, George Ogoh, Patrick Filima, Barisua Nsaanee, Bradley Caron, Franco Pestilli, Damian Eke
{"title":"FAIR African brain data: challenges and opportunities.","authors":"Eberechi Wogu, George Ogoh, Patrick Filima, Barisua Nsaanee, Bradley Caron, Franco Pestilli, Damian Eke","doi":"10.3389/fninf.2025.1530445","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The effectiveness of research and innovation often relies on the diversity or heterogeneity of datasets that are Findable, Accessible, Interoperable and Reusable (FAIR). However, the global landscape of brain data is yet to achieve desired levels of diversity that can facilitate generalisable outputs. Brain datasets from low-and middle-income countries of Africa are still missing in the global open science ecosystem. This can mean that decades of brain research and innovation may not be generalisable to populations in Africa.</p><p><strong>Methods: </strong>This research combined experiential learning or experiential research with a survey questionnaire. The experiential research involved deriving insights from direct, hands-on experiences of collecting African Brain data in view of making it FAIR. This was a critical process of action, reflection, and learning from doing data collection. A questionnaire was then used to validate the findings from the experiential research and provide wider contexts for these findings.</p><p><strong>Results: </strong>The experiential research revealed major challenges to FAIR African brain data that can be categorised as socio-cultural, economic, technical, ethical and legal challenges. It also highlighted opportunities for growth that include capacity development, development of technical infrastructure, funding as well as policy and regulatory changes. The questionnaire then showed that the wider African neuroscience community believes that these challenges can be ranked in order of priority as follows: Technical, economic, socio-cultural and ethical and legal challenges.</p><p><strong>Conclusion: </strong>We conclude that African researchers need to work together as a community to address these challenges in a way to maximise efforts and to build a thriving FAIR brain data ecosystem that is socially acceptable, ethically responsible, technically robust and legally compliant.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1530445"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1530445","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The effectiveness of research and innovation often relies on the diversity or heterogeneity of datasets that are Findable, Accessible, Interoperable and Reusable (FAIR). However, the global landscape of brain data is yet to achieve desired levels of diversity that can facilitate generalisable outputs. Brain datasets from low-and middle-income countries of Africa are still missing in the global open science ecosystem. This can mean that decades of brain research and innovation may not be generalisable to populations in Africa.
Methods: This research combined experiential learning or experiential research with a survey questionnaire. The experiential research involved deriving insights from direct, hands-on experiences of collecting African Brain data in view of making it FAIR. This was a critical process of action, reflection, and learning from doing data collection. A questionnaire was then used to validate the findings from the experiential research and provide wider contexts for these findings.
Results: The experiential research revealed major challenges to FAIR African brain data that can be categorised as socio-cultural, economic, technical, ethical and legal challenges. It also highlighted opportunities for growth that include capacity development, development of technical infrastructure, funding as well as policy and regulatory changes. The questionnaire then showed that the wider African neuroscience community believes that these challenges can be ranked in order of priority as follows: Technical, economic, socio-cultural and ethical and legal challenges.
Conclusion: We conclude that African researchers need to work together as a community to address these challenges in a way to maximise efforts and to build a thriving FAIR brain data ecosystem that is socially acceptable, ethically responsible, technically robust and legally compliant.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.