FAIR African brain data: challenges and opportunities.

IF 2.5 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Neuroinformatics Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.3389/fninf.2025.1530445
Eberechi Wogu, George Ogoh, Patrick Filima, Barisua Nsaanee, Bradley Caron, Franco Pestilli, Damian Eke
{"title":"FAIR African brain data: challenges and opportunities.","authors":"Eberechi Wogu, George Ogoh, Patrick Filima, Barisua Nsaanee, Bradley Caron, Franco Pestilli, Damian Eke","doi":"10.3389/fninf.2025.1530445","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The effectiveness of research and innovation often relies on the diversity or heterogeneity of datasets that are Findable, Accessible, Interoperable and Reusable (FAIR). However, the global landscape of brain data is yet to achieve desired levels of diversity that can facilitate generalisable outputs. Brain datasets from low-and middle-income countries of Africa are still missing in the global open science ecosystem. This can mean that decades of brain research and innovation may not be generalisable to populations in Africa.</p><p><strong>Methods: </strong>This research combined experiential learning or experiential research with a survey questionnaire. The experiential research involved deriving insights from direct, hands-on experiences of collecting African Brain data in view of making it FAIR. This was a critical process of action, reflection, and learning from doing data collection. A questionnaire was then used to validate the findings from the experiential research and provide wider contexts for these findings.</p><p><strong>Results: </strong>The experiential research revealed major challenges to FAIR African brain data that can be categorised as socio-cultural, economic, technical, ethical and legal challenges. It also highlighted opportunities for growth that include capacity development, development of technical infrastructure, funding as well as policy and regulatory changes. The questionnaire then showed that the wider African neuroscience community believes that these challenges can be ranked in order of priority as follows: Technical, economic, socio-cultural and ethical and legal challenges.</p><p><strong>Conclusion: </strong>We conclude that African researchers need to work together as a community to address these challenges in a way to maximise efforts and to build a thriving FAIR brain data ecosystem that is socially acceptable, ethically responsible, technically robust and legally compliant.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1530445"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1530445","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The effectiveness of research and innovation often relies on the diversity or heterogeneity of datasets that are Findable, Accessible, Interoperable and Reusable (FAIR). However, the global landscape of brain data is yet to achieve desired levels of diversity that can facilitate generalisable outputs. Brain datasets from low-and middle-income countries of Africa are still missing in the global open science ecosystem. This can mean that decades of brain research and innovation may not be generalisable to populations in Africa.

Methods: This research combined experiential learning or experiential research with a survey questionnaire. The experiential research involved deriving insights from direct, hands-on experiences of collecting African Brain data in view of making it FAIR. This was a critical process of action, reflection, and learning from doing data collection. A questionnaire was then used to validate the findings from the experiential research and provide wider contexts for these findings.

Results: The experiential research revealed major challenges to FAIR African brain data that can be categorised as socio-cultural, economic, technical, ethical and legal challenges. It also highlighted opportunities for growth that include capacity development, development of technical infrastructure, funding as well as policy and regulatory changes. The questionnaire then showed that the wider African neuroscience community believes that these challenges can be ranked in order of priority as follows: Technical, economic, socio-cultural and ethical and legal challenges.

Conclusion: We conclude that African researchers need to work together as a community to address these challenges in a way to maximise efforts and to build a thriving FAIR brain data ecosystem that is socially acceptable, ethically responsible, technically robust and legally compliant.

FAIR非洲大脑数据:挑战与机遇。
简介:研究和创新的有效性往往依赖于可查找、可访问、可互操作和可重用(FAIR)数据集的多样性或异质性。然而,大脑数据的全球格局尚未达到所需的多样性水平,从而促进可推广的产出。来自非洲低收入和中等收入国家的大脑数据集在全球开放科学生态系统中仍然缺失。这可能意味着数十年的大脑研究和创新可能无法推广到非洲人口。方法:本研究采用体验式学习或体验式研究与问卷调查相结合的方法。经验性研究涉及从收集非洲大脑数据的直接实践经验中获得见解,以使其公平。这是一个行动、反思和从数据收集中学习的关键过程。然后使用问卷来验证经验研究的结果,并为这些发现提供更广泛的背景。结果:经验性研究揭示了FAIR非洲大脑数据面临的主要挑战,这些挑战可分为社会文化、经济、技术、伦理和法律挑战。它还强调了增长机会,包括能力发展、技术基础设施发展、资金以及政策和监管变革。然后,调查问卷显示,更广泛的非洲神经科学界认为,这些挑战可以按优先顺序排列如下:技术、经济、社会文化、道德和法律挑战。结论:我们的结论是,非洲科学家需要作为一个社区共同努力,以一种最大限度地努力的方式来解决这些挑战,并建立一个繁荣的FAIR大脑数据生态系统,这个生态系统是社会可接受的、道德上负责任的、技术上健全的、法律上合规的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroinformatics
Frontiers in Neuroinformatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
4.80
自引率
5.70%
发文量
132
审稿时长
14 weeks
期刊介绍: Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states. Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信